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ĉκ Null space coefficient corresponding to �a�κ

d Propagation distance with the following subscript and superscript definitions:
di Total propagation distance from transmitter to the ith scatterer to re-

ceiver
d× Total propagation distance from transmitter to defect to receiver
dδ Path accuracy, indicating to what degree the propagation path is

known
dt Uncertainty in propagation distance / transducer location
dixy Distance from the ith transducer to pixel location (x,y)
dmxy Total propagation distance from transmitter to pixel location (x,y) to

receiver for the mth trasmitter-receiver pair
d×mxy Product of propagation distances from transmitter to pixel (x,y) and

pixel (x,y) to receiver for the mth transducer pair
dmax Maximum propagation distance for any received signal
d
�

Coefficient corresponding to the projection of �dm onto �v�TR

Dxy State variable indicating that damage is present at pixel location (x,y)

e Weighting coefficient with the following subscript definitions:
ei jxy Weighting coefficient for pixel location (x,y) associated with the ith

transmitter and jth receiver
emxy Weighting coefficient for pixel location (x,y) associated with the mth

transducer pair

e Euler’s number, base of the natural logarithm

erf(x) Error function

f Frequency (Hz)

f
(
�b, �h

)
Nonlinear function that performs a floor operation on each element of �b for

which �h is a zero, and a ceiling operation on each element of �b for which �h is a
one

xii



gcd(·) Greatest common denominator for all vector elements within the parentheses

Fs Sampling frequency

G (ω) Propagation-specific components of M (ω)

I0(z) Modified Bessel function of the first kind

j Square root of −1

k (ω) Wavenumber (radians/mm)
k (ω) Wavenumber as a function of frequency
kδ (k) Wavenumber error as a function of wavenumber

m Measured (noisy) data with the following associated notation:
m (t) Time-domain representation of measured data
m̂ (x) Distance-domain (a.k.a. spatial-domain) representation of measured

data
m̄ (x) Distance-domain representation of measured data after frequency-

domain deconvolution

M Measured (noisy) data with the following associated notation:
M̂ Actual, or true value of underlying measurement value (noise-free

version)
M (ω) Frequency-domain representation of measured data
M̄ (ω) Frequency-domain representation of measured data after deconvo-

lution
M (k) Wavenumber-domain representation of measured data
M̄ (k) Wavenumber-domain representation of measured data after decon-

volution

n Quantity indicated by subscript and superscript:
nm Number of measured signals
nn Number of time-domain samples
nr Number of unique receivers
ns Number of unique sensors
nt Number of unique transmitters
nx Number of discrete pixel location in the x-direction
ny Number of discrete pixel location in the y-direction
nz Arbitrary quantity corresponding to one of the above definitions
n�TR Dimensionality of column space of QTR

n�TR Dimensionality of null space of QTR

n�τρ Dimensionality of column space of Qτρ

n�τρ Dimensionality of null space of Qτρ

xiii



N Additive noise term with the following subscript definitions:
N Noise associated with measured data, M
N|·| Noise associated with magnitude of measured data, |M|
Nln|·| Noise associated with log-magnitude of measured data, ln |M|)
NR Real component of N
NI Imaginary component of N

p(x) Probability density function (PDF) with the following variations:
p(x, y) Two-dimensional PDF in Cartesian coordinates
pM(r, θ) Two-dimensional PDF in polar coordinates of measured data, M
p|M|(r) PDF of magnitude of measured data, |M|
p|·|(ν) PDF of noise associated with magnitude of measured data, N|·|
pln |·|(ν) PDF of noise associated with log-magnitude of measured data, Nln |·|
p� (θ) PDF of phase noise of measured data, M

p (ω) Frequency-dependent propagation loss

P Pixel value with the following superscript and subscript notation:
P̂xy Ratio of pixel value when damage is present at (x,y) over the max-

imum pixel value at (x,y) when damage is present elsewhere in the
structure

P (x) Pixel value as a function of distance from known damage location
Pxy (Dab) Pixel value at pixel location (x,y) when damage is present at pixel

location (a,b)
PDS

xy Pixel computed per conventional (delay and sum) imaging for pixel
location (x,y)

PMV
xy Pixel computed per minimum variance imaging for pixel location

(x,y)

Q Signal-to-noise ratio with the following subscript definitions:
Qmin Minimum SNR for any frequency considered
Q (ω) SNR for a specific frequency measurement
Qi j SNR for the ith column (FFT frequency bin) and jth received signal

r Radius variable

R (ω) Receiver-specific components of M (ω)

s (t) Time-domain representation of differenced signals with the following super-
script and subscript definitions:
si j (t) Differenced signals corresponding to transmission from the i th trans-

ducer and reception at the jth transducer
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w (t) Time-domain window function

x Distance variable corresponding to the x-direction with the following subscript
definitions:
xi ith x-coordinate
xr(m) x-coordinate of the receiver for the mth transmitter-receiver pair
xt(m) x-coordinate of the transmitter for the mth transmitter-receiver pair

x (t) Time-domain signal common to all recorded measurements

X Arbitrary propagating guided wave
X (ω) Frequency-domain representation of x (t)
X (k) Wavenumber-domain representation of x (t)

y Distance variable corresponding to the y-direction with the following subscript
definitions:
yi ith y-coordinate
yr(m) y-coordinate of the receiver for the mth transmitter-receiver pair
yt(m) y-coordinate of the transmitter for the mth transmitter-receiver pair

α Arbitrary scaling coefficient with the following subscript definitions:
αBSS Frequency-scaling coefficient for baseline-signal stretch (αBSS ≈ 1)

γ (x) Deconvolved and filtered transducer transfer function in the distance-domain

Γ Deconvolved and filtered transducer transfer function
Γ (ω) Frequency-domain deconvolved and filtered transducer transfer

function
Γ (k) Wavenumber-domain deconvolved and filtered transducer transfer

function
Γδ (k) Deconvolution error

ε Modeling error present in the unit look direction

θ Phase or argument of a complex value
Δθ (ω) Maximum angular deviation in phase for a specific frequency

κ Wavenumber-associated coefficient
κ Frequency-independent component of �k
κ̂ True value of frequency-independent component of �k
κδ Error in estimate of frequency-independent component of �k
κmin Smallest value of κδ that results in an all-integer �bδ
κi Coefficient associated with the ith power of k in polynomial repre-

sentation of kδ (k)
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λi ith eigenvalue of the autocorrelation matrix, Zxy (eigenvalues are assumed to be
arranged in descending order with λ1 corresponding to the largest eigenvalue)

μ Mean value of random variables with the following subscript definitions:
μ2
R Variance of real part of complex Gaussian random variable, N
μ2
I

Variance of imaginary part of of complex Gaussian random variable,
N

σ2 Noise variance with the following subscript definitions:
σ2

nm
Average noise power observed across all measured signals

σ2
N Variance of complex Gaussian random variable, N

σ2
R

Variance of real part of complex Gaussian random variable, N
σ2
I Variance of imaginary part of complex Gaussian random variable, N

σ2
bi Variance of noise in �Nbi

τ Time reference corresponding to the maximum amplitude of the excitation sig-
nal

φ Squared-norm of the projection of �exy onto the null-space of �v1

ψm
xy Scattering coefficient of an incident wave at pixel location (x,y) for the mth

transmitter-receiver pair

Ψ (ω) Frequency-dependent transfer coefficient representing scattering and propaga-
tion loss
Ψai (ω) Scattering and propagation loss transfer function for the ith scatterer

associated with the ath data set (“b” for baseline or “c” for current,
or test data)

Ψ× (ω) Scattering and propagation loss transfer function associated with a
defect

ω Angular frequency
ω (k) Angular frequency as a function of wavenumber
Δω Angular frequency spacing between FFT frequency bins

A Matrix associated with the assumed propagation model with the following su-
perscript and subscript definitions:
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A [3nm × 3(nt + nr + 1) + nm] Matrix relating desired parameters to
measured data

A� [3(nt+nr+1)+nm×2n�TR+nt+nr+1] Orthonormal vectors spanning
null space of A

A�R [3(nt+nr+1)+nm×n�TR] Columns of A� associated with ambiguities
in TR and RR estimates

A�I [3(nt+nr+1)+nm×n�TR] Columns of A� associated with ambiguities
in TΔ and RΔ estimates

A�τ [3(nt + nr + 1)+ nm × nt] Columns of A� associated with ambiguities
in �τ estimates

A�ρ [3(nt + nr + 1)+ nm × nr] Columns of A� associated with ambiguities
in �ρ estimates

�a�κ [3(nt + nr + 1) + nm × 1] Column of A� associated with ambiguities
in κ estimate

�b [nm × 1] Vector containing unknown integer values with the following super-
script and subscript definitions:
b̂
=

A Actual, or true, component of �b that resides in column space of BA†

�bδ All-integer error term associated with an estimate of �b
�b
(
�c
)

Estimate of �b as a function of null-space coefficients, �c
�bτρ

(
�c τρ

)
Component of �b

(
�c
)

that is strictly dependent on �c τρ estimate
�bκ (c) Component of �b

(
�c
)

that is strictly dependent on estimates of ĉκ

B Matrix associated with the all-integer �b vector
B [nm × 3(nt + nr + 1) + nm] Matrix used to isolate �b elements of Z

([ 0 Im ])
B=A [nm × nw] Collection of nw separate estimates of �b that reside in col-

umn space of BA†

�c Vector of frequency-independent null-space coefficients with the following sub-
script definitions:
ĉb [(nt +nr +1)×1] Null-space coefficients satisfying all-integer model

constraints associated with �b
�c τρ [(nt + nr) × 1] Null-space coefficients associated with �τ and �ρ esti-

mates
�c τ [nt × 1] Null-space coefficients associated with �τ estimates
�c ρ [nr × 1] Null-space coefficients associated with �ρ estimates
ĉκ [1 × 1] Null-space coefficients associated with “true” value of κ

C Matrix of unknown coefficients with the following superscript and subscript
definitions:
C�A Unknown null space coefficients associated with A�

�d [nm × 1] Propagation distance vector composed of d specific to each transducer
pair with the following subscript and superscript definitions:
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�dm Measured propagation distance vector
�d
�

Logarithm of scaled propagation distance vector
�d
�

Coefficients corresponding to the projection of �dm onto the basis
vectors, Q �TR

D̂m [nx×ny] Matrix with elements corresponding to the distance from the transmit-
ter of the mth transmitter-receiver pair to each pixel location

Ďm [nx × ny] Matrix with elements corresponding to the distance from the receiver
of the mth transmitter-receiver pair to each pixel location

�exy [nm × 1] Steering vector associated with pixel location (x,y) composed of emxy

weighting coefficients

Em [nx × ny] Matrix with elements corresponding to the mth element of the steering
vector, �exy, for each pixel location

Fm [nx × ny] Matrix with elements corresponding to the mth element of the steering
vector, �exy, for each pixel location prior to normalization

�h [nm × 1] Binary vector of ones and zeros indicating whether a fix or floor oper-
ation should be used in f with the following additional notation:
ĥ (c) Set of fix and floor operations that minimize (5.65) for a given value

of c

Iz [nz × nz] Identity matrix

�k [nw × 1] Wavenumber vector with the following subscript definitions:
�kΔ Frequency-dependent components of �k (see κ for frequency-

independent components)

M [3nm×nw] Measured, noisy frequency-domain data with the following subscript
definitions:
M̂ True, or actual values without additive noise
MI Phase response of receiver-specific signals in the frequency-domain
MR Log-magnitude of receiver-specific signals in the frequency-domain
M�

TR Projection of frequency-dependent components of MI onto Q �TR

N [nm × nw] Matrix containing additive noise terms. Specific noise distributions
are indicated by the following subscripts:
Nb [nm × nw] Matrix containing additive noise terms associated with B=A

�Ni [nm × 1] The ith column of N. Composed of the following sub-vectors::
�NRi Log-magnitude noise associated with the ith column of M
�NIi Phase noise associated with ith column of M
�Nbi Noise associated with ith column of B=A

�p [nw × 1] Propagation loss vector
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P Matrix with context-dependent definition as indicated by the following super-
scripts and subscripts:
PDS [nx × ny] Conventional imaging pixel values
PMV [nx × ny] Minimum variance imaging pixel values

PΔ [nw × nw] Projection matrix onto null space of �1
T

w

P�TR [nm × nm] Projection matrix onto Q�TR

P�τρ [nm × nm] Projection matrix onto Q�τρ

�Qi [3nm × 1] Vector of squared complex SNR values for the ith column of Q

Q Mixing matrix with the following subscript and superscript definitions:
Q [3nm×3nm] Estimated SNR for each frequency-domain measurement

in M
QR [nm × nr] Relates frequency-dependent components of M to

frequency-dependent components of R
Qρ [nm × nr] Relates frequency-independent components of M to

frequency-independent components of R
QT [nm × nt] Relates frequency-dependent components of M to

frequency-dependent components of T
Qτ [nm × nt] Relates frequency-independent components of M to

frequency-independent components of T
QTR [nm × (nt + nr)] Composite matrix([ QT QR ])
Qτρ [nm × (nt + nr)] Composite matrix([ Qτ Qρ ])
Q�TR [nm × n�TR] Orthonormal basis for column space of QTR

Q�τρ [nm × n�τρ] Orthonormal basis for column space of Qτρ

Q�TR [nm × (nm − n�TR)] Orthonormal basis for left null space of QTR

Q�τρ [nm × (nm − n�τρ)] Orthonormal basis for left null space of Qτρ

Q�TR [(nt + nr) × n�TR] Orthonormal basis for null space of QTR

Q�τρ [(nt + nr) × n�τρ] Orthonormal basis for null space of Qτρ

Q�(T )R [nt × n�TR] Sub-matrix of Q�TR associated with the QT portion of QTR

Q�T (R) [nr × n�TR] Sub-matrix of Q�TR associated with the QR portion of QTR

R [nr × nw] Receiver-specific frequency-domain signals with the following super-
script and subscript definitions:
RI Phase response of receiver-specific signals in the frequency-domain
RR Log-magnitude of receiver-specific signals in the frequency-domain
RΔ Frequency-dependent components of RI (see �ρ for frequency-

independent components)

�s Vector of back-propagated, differenced signals arranged in vector format with
the following additional notation:
�sxy (t) [nm × 1] Backpropagated, differenced signals associated with pixel

location (x,y) at time t
ŝxy [nm × 1] Unit-norm vector representing the relationship between

backpropagated, differenced signals at pixel location (x,y)
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S Matrix associated with scattered differenced signals with the following sub-
script definitions:
Sm [nx × ny] Matrix with elements corresponding to the mth back-

propagated, instantaneous-windowed signal for each pixel location
Sxy [nm × nm] Autocorrelation matrix for pixel location (x,y)
Ŝxy [nm×nm] Diagonally loaded autocorrelation matrix for pixel location

(x,y)

T [nt × nw] Transmitter-specific frequency-domain signals with the following su-
perscript and subscript definitions:
TI Phase response of transmitter-specific signals in the frequency-

domain
TR Log-magnitude of transmitter-specific signals in the frequency-

domain
TΔ Frequency-dependent components of TI (see �τ for frequency-

independent components)

U [nw × nw] Matrix used in computation of �Σ
•

�v [nm × 1] Unit-norm Eigenvector with the following subscript definitions:
�vi Eigenvector associated with the ith eigenvalue, λi

�v �TR Eigenvector corresponding to projection of �d onto space spanned by
Q�TR

V Context-dependent Eigenvector matrix associated with the following super-
script and subscript definitions:
Vm [nx × ny] Matrix with elements corresponding to the mth element of

the Eigenvector associated with the largest eigenvalue for each pixel
location

V�1 [nmx(nm−1)] Orthonormal vectors spanning on the left null space of
�v1

�wxy [nm × 1] Optimal weighting coefficients associated with pixel location (x,y)

X [ny × nx] Matrix of x-coordinates corresponding to each pixel location

Y [ny × nx] Matrix of y-coordinates corresponding to each pixel location

Z [3(nt + nr + 1) + nm × nw] Matrix of unknown parameters

�γ [3nm × 1] Vector containing diagonal elements of Γ

Γ [3nm × 3nm] Intermediate matrix used to relate noise in M to resulting noise in
�b estimates

Θ [nx × ny] Matrix of inner product values �vH
1 �exy for each pixel location

Λ1 [nx × ny] Matrix with elements corresponding to the largest eigenvalue for each
pixel location
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�ρ [nr × 1] Frequency-independent components of RI

�σ
2
m [nm × nw] Measured noise variance

�Σ [nw × 1] Vector for performing a weighted average over frequency with the
following additional superscript and subscript notations:
�Σ
•

Optimal weights for performing a weighted average over frequency
under assumptions of circularly-symmetric Gaussian noise

�τ [nt × 1] Frequency-independent components of TI

Φ [nx × ny] Matrix of �eH
xyNN�exy values for each pixel location

Ψm [nx × ny] Matrix with elements corresponding to the scattering coefficient for
each pixel location and mth transmitter-receiver pair

ΩN [nw × nw] Diagonal matrix with diagonal elements comprised of σ2
bi values

�0z [nz × 1] All zeros vector

0 Null matrix of arbitrary size

�1z [nz × 1] All ones vector
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SUMMARY

Structural health monitoring (SHM) is the periodic interrogation of man-made struc-

tures to detect damage and characterize structural integrity. The motivation for performing

SHM is to identify defects or damage in a structure before they become problematic, ei-

ther through a degradation in performance or catastrophic failure. SHM plays a key role

in condition-based maintenance, wherein parts and equipment are repaired or replaced on

an as needed basis. Condition-based maintenance offers significant cost savings over more

traditional time-based maintenance and obsolescence, which replaces parts based on time

in service, frequently resulting in the replacement of good parts.

Ultrasonic guided waves are able to propagate over long-distances with minimal loss

and are capable of interacting with both surface and subsurface defects. As such, many

SHM research efforts are exploring the use of ultrasonic guided waves for the interrogation

of large, plate-like structures, such as aircraft skins, ship hulls, bridge gusset plates, and

storage tanks. Of these, spatially distributed arrays of permanently attached, inexpensive

transducers are of particular interest since they offer an economical solution that can be

made completely automated and available to interrogate the structure at any time. The

research presented here uses such a distributed array of permanently attached transducers

to produce useful images of a large, plate-like structure with ultrasonic guided waves.

The work is largely split into five areas: minimum variance imaging, parameter estima-

tion, parameter compensation, array configuration performance, and damage characteriza-

tion. Minimum variance imaging, which involves the incorporation of minimum variance

techniques into conventional delay-and-sum imaging, is shown to significantly improve
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resolution and reduce artifacts with only minor increases in computational complexity. Pa-

rameter estimation is achieved through the model-based parameter estimation algorithm

(MBPE). The MBPE algorithm was developed to adaptively estimate dispersion relations,

transducer-specific transfer functions, transducer spacings, and propagation loss. Addi-

tional improvements in guided wave imaging are then demonstrated through deconvolution

and dispersion compensation using MBPE parameter estimates rather than nominal pa-

rameters. A preliminary investigation into the factors that affect distributed array imaging

performance is conducted. The imaging algorithm employed, excitation function, num-

ber of sensors, sensor arrangement, array aperture, and array location are all considered.

Finally, damage characterization, which represents a new capability for distributed array

imaging, is performed by leveraging the inherent sensitivity of minimum variance imaging

to scattering behavior.

This dissertation consists of the following contributions:

• Adaptation of the MVDR algorithm for guided wave imaging.

• Development of a model-based algorithm for adaptively estimating wave propagation

parameters with minimal a priori information.

• Incorporation of adaptively estimated parameters into guided wave imaging algo-

rithms through the use of distance domain signals.

• A methodology for quantitatively characterizing the ability of an array to detect and

locate damage throughout a structure.

• A methodology for characterizing defects or damage using guided waves generated

from a spatially distributed array.
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CHAPTER I

INTRODUCTION

Both commercial and government entities, whether due to budgetary constraints or a need

for competitive advantage, have always been driven to minimize costs, while simulta-

neously maintaining or improving capability and safety. In some cases, this may en-

tail extending the service-life of a structure beyond its original design-life, such as for

many bridges and aircraft, or finding ways to reduce maintenance costs. The concept of

condition-based maintenance often arises in these contexts, because it involves repairing

or replacing parts and equipment on an as-needed basis, and offers significant cost savings

over the more traditional time-based obsolescence and maintenance schedules. In order

to perform repair or replacement at the correct time, however, the condition of the struc-

ture must be known. As such, there is significant interest, both from the government and

commercial industry, in inexpensive methods to monitor the condition of a structure and

identify potential defects or damage.

The excellent safety record of both commercial and military aircraft is largely due to

the inspection and maintenance requirements of in-service airframes. Commercial aircraft

are required by federal law to undergo thorough, periodic inspections in accordance with

FAA regulations [1, 2], while military aircraft are subject to similar inspection requirements

governed by their respective services, such as the U.S. Navy’s OPNAVINST 4790 [3]. Un-

fortunately, however, due to the sheer size and complexity of these aircraft, the required

inspections are extremely expensive and time-consuming and there is an inherent risk that

damage may be introduced by the inspection itself. Adding to the cost, many parts are

replaced based simply on how long they have been in use with no regard for their ac-

tual condition, which results in the unnecessary replacement of good parts. As such, both
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government and commercial aviation industries are looking to incorporate new inspection

technologies into current and future aircraft designs to reduce costs and maintain or im-

prove safety.

The relatively new field of structural health monitoring (SHM) involves the periodic in-

terrogation of man-made structures to detect damage and characterize the structural health

of a system. SHM systems are commonly based upon nondestructive evaluation (NDE)

techniques that quantitatively characterize materials and structures through noninvasive

means. Although a wide range of methods can be used for NDE, such as radiographic,

thermographic, electromagnetic, and optical methods, the work here is primarily focused

on the use of ultrasound for SHM. SHM systems offer a tool to rapidly inspect large, in-

accessible, or complex components, reducing the need for expensive, time consuming, and

invasive inspections.

Most current ultrasonic inspection techniques use bulk waves to penetrate the material

and detect subsurface damage in the immediate vicinity of a movable ultrasonic transducer.

Because the sensor only interrogates a localized area, a complete raster scan of the struc-

ture is required to generate a comprehensive image of large plate-like components. These

manual or automated scans can be very time consuming and often require custom hardware.

Many SHM research efforts [4, 5, 6] are exploring the use of ultrasonic guided waves

for the interrogation of large, plate-like structures, such as aircraft skins, ship hulls, bridge

support gussets, storage tanks, and architectural structures. Guided waves are able to prop-

agate over long-distances with minimal loss and are capable of interacting with both surface

and subsurface defects [7]. The goal is to obtain useful images of large plate-like structures

with a small number of sampling locations, avoiding the need to scan the entire surface.

Further, if a set of permanently attached transducers is employed for interrogation, rather

than a single movable transducer, then an SHM system could be completely automated and

made available to evaluate the structure at almost any time [8].

2



Although there are major economic advantages to using guided waves for in situ inter-

rogation of large, plate-like structures over traditional NDE methods, a significant number

of challenges are associated with obtaining sufficient information from a sparse, distributed

array of transducers as compared to a complete bulk wave evaluation. Geometric disper-

sion, multimode propagation, and multiple reflections within the structure result in complex

waveforms that are difficult to interpret. Additionally, geometric dispersion changes with

environmental conditions, such as temperature, further complicating analysis. These com-

plexities, if unaddressed, cause artifacts in guided wave images that are often indistinguish-

able from actual damage. As a result, many proposed guided wave imaging systems are

forced to compensate by increasing the number of required transducers to increase system

signal-to-noise ratio (SNR), which increases system cost and complexity.

The research presented here advances the state of the art in in situ guided wave imaging

techniques in several respects. First, minimum variance imaging is presented in Chap-

ter IV as a method that significantly improves resolution and reduces artifacts with only

minor increases in computational complexity. To address the challenges posed by the ef-

fects of dispersion, Chapter V describes the model-based parameter estimation (MBPE)

algorithm, which is capable of simultaneously estimating dispersion relations, transducer

transfer functions, propagation loss, and transducer spacing using signals recorded from an

in situ distributed array. Chapter VI then presents two methods for using these estimated

parameters to compensate for their in situ variations, which further improves both conven-

tional and minimum variance imaging. Finally, Chapter VII describes two areas of ongoing

research that seek to (1) characterize the ability of a specific array configuration to detect

and locate damage and (2) leverage the minimum variance imaging algorithm to perform

damage characterization with a sparse, distributed array of transducers.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

Although the fields of NDE and SHM are currently experiencing rapid growth, both fields

have been in existance for quite some time. The requirement for periodic, nondestructive

inspections for the purpose of structural health monitoring can be traced back at least as

early 1854. At that time, when a boiler exploded in Hartford, CT, killing 21 people and

injuring 50 more, the State of Connecticut passed a law requiring annual visual inspections

of similar boilers [9]. Since then, a wide range of techniques and technologies has been

adapted to perform nondestructive inspections, including but not limited to radiographic,

thermographic, electromagnetic, optical, and ultrasonic methods. Each technique has in-

herent benefits and constraints, with no single technique having global applicability. A

brief historical overview and thorough comparison of NDE techniques can be found in

Hellier [10].

2.1 Elastic Waves

Of all the available NDE methods, the use of ultrasonics, and particularly ultrasonic guided

waves, is of primary interest here. A history of the science of sound can be found in

the book by Pierce [11]. The first mathematical description of sound propagation began

with Sir Isaac Newton’s Principia Mathematica in 1687 [12]. In this work, sound is de-

scribed as pressure pulses flowing through fluid particles and experimental measurements

are even provided for the speed of sound through air. In the 1700’s, Euler, Lagrange, and

d’Alembert all made significant additional contributions to our current mathematical mod-

els of sound propagation, including the introduction of today’s wave equation. Then in

1877, Lord Rayleigh published his comprehensive Theory of Sound [13], which introduced

a mathematical analysis of propagation modes.
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The study of guided waves in elastic solids began with Lord Rayleigh in 1885. His

original work on the subject focused on a single free surface of an infinite homogeneous

isotropic elastic solid [14]. The waves that he predicted in 1885 are now known as Rayleigh

waves. He later realized that this work was a special case of waves propagating in thin,

plate-like structures and generalized his analysis in 1889 [15]. In 1917, the English math-

ematician Horace Lamb simplified Rayleigh’s work on the waves propagating inside the

plate, establishing what is today known as the Lamb (or Rayleigh-Lamb) Equations [16].

Two fundamental realizations about guided waves are derived directly from the work of

Rayleigh and Lamb: (1) in contrast to an unbounded medium, in which only longitudinal

and transverse waves propagate, plate-like structures support three infinite sets of propa-

gating modes, and (2) the physical wave velocity of these propagating modes is frequency

dependent. Unfortunately, the simplified characteristic equations that resulted from Lamb’s

work cannot be solved analytically; they require numerical solutions. As such, it was not

until 1967 (after the advent of computers) that I. A. Viktorov published a comprehensive

work on the behavior of both Lamb and Rayleigh waves that is still used today [17], in-

cluding his description of how guided waves interact with surface and subsurface defects.

At the time, guided waves were already being used for damage detection and localization

in a pulse-echo configuration for a number of different applications, from automotive sheet

metal inspection, to gas turbine blades, combustor casings, and other aircraft components.

2.2 Ultrasonic NDE

The use of elastic waves for NDE started in 1929, when Sergei Y. Sokolov proposed the

use of a single transducer on a steel shaft to detect material flaws through the use of a

reflectogram [18]. Note that in order for his system to work, he had to use frequencies

greater than 20 kHz, which are inaudible to the human ear and are typically referred to

as ultrasonic. He also proposed the first “ultrasonic camera” in 1935 [19], wherein the
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use of a sufficiently high frequency (3 MHz) theoretically enabled images to be gener-

ated with a resolution “comparable to that of a microscope”. About the same time, in

1931, Muhlhauser submitted the first patent for a system that transmitted ultrasonic en-

ergy into a test sample and detected the ultrasonic energy emerging from the sample with

a second transducer [20], known today as a pitch-catch configuration. Later, during World

War II, Floyd Firestone and Donald Sproule independently developed the bulk-wave in-

spection technique known today as pulse-echo. The pulse-echo technique uses a single

transducer [21], or pair of co-located transducers [22], to transmit a pulse of energy into a

sample and receive the reflected energy from geometric structures like the front and back

wall, cracks or other defects.

Traditional ultrasonic bulk wave inspection, such as described in the previous para-

graph, is capable of reliably inspecting surface and subsurface features of a structure and

is widely used today. Although bulk wave inspection inspects a localized area directly

underneath the sensor at any given time, acoustic images can be generated by combining

multiple measurements [23]. The one-dimensional recorded data are referred to as an A-

scan, wherein the recorded ultrasonic echoes correspond to the front wall, back wall, and

one or more subsurface scatterers. The time-of-arrival of each echo provides an indication

of the depth of the reflector. When multiple A-scans are recorded along a spatial path, a

two-dimensional B-scan can be generated that provides the equivalent of a cross-sectional

view of the structure along that path. A B-scan can provide an indication of both the depth

and size (along the path) of a subsurface feature. A C-scan comprises multiple B-scans, ob-

tained by raster-scanning the structure, and is typically represented as a two-dimensional

cross-section of the structure corresponding to a specific depth or range of depths. Be-

cause a complete raster scan of the structure is required for interrogation of large, plate-like

components, bulk wave inspection can be very time consuming and often requires custom

hardware.

6



2.3 Ultrasonic Phased Arrays

One major development in bulk wave inspection, relevant to the work presented here, is the

use of ultrasonic phased arrays. The concept of a phased array was first introduced by Karl

Ferdinand Braun in 1906 [24] in the context of a “directive antenna”. Braun used three

antenna wires with a common transmitter to achieve significant directivity of the radiated

signal. The directivity was a result of the constructive interference of the propagating

signals in a specific direction. In fact, this connection between the spatial relationship of

array elements and the propagating wavefront lies at the heart of every phased array system

in existence today. Although rooted in electromagnetic applications, phased arrays are now

used in a broad range of applications, including ultrasonics.

Early work on ultrasonic phased arrays first appear in the literature, for both biomedical

applications [25] as well as NDE [26], in the late 1960s and has experienced considerable

growth over the past 50 years [27]. Ultrasonic phased arrays use multiple elements to

electronically focus both transmitted and recorded energy on specific directions and depths,

thereby allowing for volumetric scanning without moving the probe. This feature can be

invaluable for reducing inspection times, as well as inspecting parts or equipment with

limited access [28]. Also, the use of multiple elements increases the signal-to-noise ratio

(SNR), resulting in an ability to discern greater detail from the interrogation structure [23].

The trade-off for these improvements is an increase in cost, for both the probe and signal

processing equipment, and a need for increased operator training. Today, hand-held NDE

sensors with 256 sensors are commercially available [28]. A comprehensive review on

ultrasonic arrays in NDE is provided by Drinkwater and Wilcox [29].
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2.4 Minimum Variance Distortionless Response (MVDR)

Although phased arrays represent an entire research field unto themselves that is not dis-

cussed here, the signal processing associated with phased arrays, referred to as beamform-

ing, is of particular interest. From a beamforming perspective, early methods simply de-

layed or phase shifted (hence the term “phased array”) each channel an appropriate amount

to compensate for propagation delay and then summed each of the signals to obtain a com-

posite signal. If the same signal is present in each channel and any additive noise is assumed

to be Gaussian, this delay-and-sum technique can be shown to increase SNR by a factor of

nm, the number of independent measurements [30].

More advanced beamforming techniques, however, started appearing in the mid-1960s.

Although a comprehensive review of these advanced methods is beyond the scope of this

text, the work leading up to the development of minimum variance distortionless response

(MVDR) is provided here due to its relevance. Readers are encouraged to consult a text or

review article on phased arrays [31, 32] or beamforming [30, 33] for further details.

In 1964, Claerbout [34] found that the ambient noise from the seismic array at Uinta

Basin Observatory could be predicted and canceled, significantly improving the system’s

ability to detect nuclear events. In the same year, Burg [35] expanded Wiener linear least-

mean-square-error filtering [36] to three dimensions, introducing the concept of temporal-

spatial filtering. Note that the traditional delay-and-sum techniques employed at the time

correspond to a specific subset of temporal-spatial filtering, namely filters that are all-pass,

linear-phase in time and rectangularly windowed in space. Backus et al. [37] then used this

spatial filtering technique to improve the SNR for three different seismic arrays. In both

Burg [35] and Backus et al. [37], the power spectral density of both the noise and signal

must be known or assumed a priori. Also, the multidimensional Wiener filtering technique

requires a matrix inversion operation, which can become computationally intensive as the

dimensionality of the problem is increased. An alternative to computing the matrix inver-

sion explicitly is to use recursive techniques. In 1965, Wiggins and Robinson [38] improved

8



upon the recursive techniques developed previously by Robinson [39] and Levinson [36]

to reduce the computational costs of obtaining the Wiener filtering coefficients.

In 1967, Widrow et al. [40] proposed a recursive filtering technique that minimizes

the mean-square-error between the filter output and an artificially injected pilot tone. The

recursive technique, now known as Least Mean Squares (LMS), is based on the technique

of steepest descent, using an instantaneous estimate of the gradient [41]. The pilot tone is

injected in such a way as to mimic the characteristics of the expected signal and provides

a reference signal to “train” the system with. The filtering technique, known today as a

Multiple Sidelobe Canceller (MSC), assumes that the incident angle and power spectrum of

the signal of interest are known, but makes no assumption about the noise characteristics. In

1969 however, Griffiths [42] modified the LMS algorithm to include assumed or expected

information about second-order statistics of the target signal, which avoids the need for a

pilot tone and removes estimator bias that is observed in some cases with the technique

proposed by Widrow et al. [40].

Also in 1967, Capon et al. [43] developed two multidimensional maximum-likelihood

(ML) filtering techniques that make no assumptions about the shape of the underlying sig-

nal. These filtering techniques were constrained to provide a distortionless signal estimate

while simultaneously minimizing output noise power. Griffiths [44] demonstrated that al-

though the ML technique does not distort the output signal, Wiener filtering provides an

output signal with higher SNR. He further showed that both techniques converge to the

same result as input SNR is increased. In 1969, Capon [45] applied the ML filtering tech-

nique to frequency-wavenumber spectrum analysis. The new technique provided visibly

improved resolution in frequency-wavenumber analysis of seismic array data.

In 1968, Claerbout [46] addressed the challenge of applying specific constraints to least-

squares, or minimum variance, filters. Using a more general framework for the constraints,

Frost presented the Constrained LMS (CLMS) filter [47] in 1972, which is today known

as the Minimum Variance Distortionless Response (MVDR) filter. He pointed out that if
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the CLMS filter is constrained to be all-pass and linear phase in time (distortionless), then

the CLMS filter output is identical to the ML filter output. For this reason, MVDR is

sometimes referred to as Capon’s method.

Since the introduction of MVDR in 1972, many enhancements to MVDR have been

made [48, 49, 50, 51] and the algorithm has been successfully applied to biomedical ul-

trasound applications [52, 53, 54, 55]. Additionally, several alternative adaptive techniques

have been developed [33], many of which can be applied to the work presented here.

2.5 Guided Wave NDE

Since guided waves are capable of propagating along the plane of plate-like structures with

little propagation loss and are sensitive to both surface and subsurface features, they offer an

efficient alternative to the traditional bulk wave inspection method described in Section 2.2.

While Rayleigh and Lamb were able to predict and explain the existence, modality, and be-

havior of guided waves around the turn of the century, there is no evidence of a method to

perform experimental verification of their findings prior to 1946, when Firestone and Ling

submitted a patent for generating and recording guided waves and using guided waves for

“the purpose of testing, measuring, or otherwise investigating the properties of solid sheets

or plates of material” and “testing plates for defects” [56]. A decade later, Worlton used

ultrasonic guided waves to reveal shallow laminar defects in solid objects and plates that

traditional ultrasonic methods were unable to detect [57]. Grigsby and Tajchman [58] then

experimentally verified group velocities and evaluated the effects of saw cuts of various

depths. As mentioned earlier, by 1967 guided waves were already being used for damage

detection and localization in a pulse-echo configuration for a number of different applica-

tions [17].

It should be noted that early guided wave NDE methods treated guided wave data simi-

lar to bulk wave data. A single guided wave measurement was analogous to an A-scan. By

repeating the measurement along a path perpendicular to the guided wave propagation, a
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graphical image of the plate can be generated by combining multiple guided wave measure-

ments, similar to a bulk wave B-scan. While a dramatic improvement over conventional

bulk-wave methods, this approach still requires a manual, linear scan of the structure (as

opposed to a raster-scan).

Guided wave tomography, however, first suggested by Jansen and Hutchins [59] in

1990, departed from this mentality and is still widely used today. These systems typi-

cally use time-of-flight and amplitude information to generate an image localized within a

polygon arrangement of ultrasonic transducers. Although the sensors can be permanently

attached, they are generally air- or liquid-coupled, which provides the ability to collect a

large number of datasets with a small number of sensors and transmit/receive equipment.

These techniques rely on the assumption that damage causes a change in arrival time of a

specific propagating mode, and they vary based on the sensor pattern [60, 61, 62], signal

features used to quantify velocity changes [63], diffraction assumptions [64], and image

generation method [65, 66].

The use of phased arrays with guided waves started appearing in the late 1990s. Deutsch

et al. [67] first demonstrated an ability to dynamically focus an ultrasonic guided wave

on a scatterer through the use of a time-reversal technique [68, 69]. For experimental

verification, Deutsch et al. excited guided waves using a linear eight-sensor array coupled

to the plate through an acrylic wedge. Due to the use of a wedge for guided wave excitation,

however, the angular range of the array was only 3̃0◦.

In contrast to the use of a wedge transducer for exciting guided waves, Monkhouse et

al. [70] and Rose et al. [71] used interdigital and comb transducers, respectively, to excite

and record guided waves. Although these transducers excited waves forward and backward

along a single line and did not have the ability to perform beamforming, they were able to

achieve some degree of mode-selectivity, addressing one of the major challenges inherent

in working with guided waves. Improving on this work, Zhu et al. [72] used a more general

time-delay periodic linear array to launch guided waves either forward or backward, and
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Monkhouse et al. [73] created a 60◦ radial transducer to improve upon the directionality

limitations of interdigital transducers.

In 2000, Wilcox et al. [74] first introduced the concept of using a compact-array of

individually addressed, inexpensive piezoelectric elements for inspecting large, plate-like

structures. The data acquisition process used a single transmitter and receiver to excite

and record from each individual element of an array, storing the data for post processing.

This method of storing all available information from the array was later termed full-matrix

capture by Holmes et al. [75] in the context of ultrasonic bulk wave inspection. Since that

time, both linear [74, 76] and circular array patterns [74, 77, 78, 79, 80] of 9-32 elements

have been investigated with both piezoelectric and electromagnetic acoustic transducers

(EMAT) to produce images using radar imaging algorithms, such as the synthetic aper-

ture focusing technique (SAFT). Methods to further improve imaging quality have been

proposed through deconvolution of the array’s spatial response [77] and for maximizing

axial resolution [80]. It should be noted that in all of the above cases, the array imaging

algorithms all treated the incoming waves as originating in the “far field”, meaning that the

incident waves impinging on the array are treated as having a planar wavefront.

2.6 Dispersion

One significant challenge encountered when working with guided waves is geometric dis-

persion, meaning that the propagation speed of Lamb waves is frequency-dependent [16].

As such, signals spread in time as they propagate and thus decrease in amplitude. The

spreading of the signals is also accompanied by a change in phase. These phase changes

have significant negative impacts on the ability of guided wave systems to detect and locate

damage [81].

One common solution to address the dispersive nature of guided wave signals is the use

of the envelope of the signals [82], which is the absolute value of the analytic representa-

tion of the signal. Some of the costs and benefits of using the envelope vs. RF signals were
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identified by Croxford et al. [83]. Alternatively, the dispersive nature of the waves can be

addressed with dispersion compensation directly in the frequency domain as demonstrated

by Sicard et al. [84], or by converting the time domain signals to the spatial domain, as

performed by Wilcox [85]. Dispersion compensation has been incorporated into the gener-

ation of guided wave B-scan images by Sicard et al. [86] and compact guided wave array

imaging by Wilcox [77].

Although dispersion estimates can be obtained by computing the nominal dispersion

curves, errors in bulk-wave speeds and plate thickness, such as may result from manufac-

turing variability and temperature variations, are compounded with numerical errors when

solving the Rayleigh-Lamb equations. As such, several methods have been developed to

characterize, or estimate, the frequency-dependent propagation velocity of guided waves.

In 1977, Sachse and Pao [87] proposed a phase spectral analysis method using received

signals from two different distances from the transmitter to extract phase velocity of lon-

gitudinal waves. The change in phase of the received signals was analyzed, assuming a

known transmitted signal and propagation distance. Their work was extended by Peters

and Petit [88] to avoid the use of a reference medium, and by Hutchins et al. [89] to apply

the technique to Lamb waves with an excitation spectrum that does not extend to 0 Hz.

Hutchins et al. [89] obtained the dispersion estimate by assuming that the effects of disper-

sion are the only factor affecting the phase response of the recorded signal, and performing

a nonlinear least-squares fit between an assumed propagation model and measured data.

Time-frequency representations (TFRs) have also been applied to estimate frequency-

dependent group velocities for Lamb waves [90, 91, 92]. One benefit unique to TFR anal-

ysis is the ability to extract both group velocity and attenuation information from a single

multi-mode signal. However, without determination of an unknown integration constant,

group velocity cannot be translated to phase velocity or a wavenumber vs. frequency dis-

persion curve.

As yet another example of dispersion estimation, Alleyne and Cawley [93] successfully
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demonstrated a two-dimensional Fourier transform method that is capable of accurately

estimating dispersion relations from a set of multi-mode signals. One of the few limita-

tions associated with the two-dimensional Fourier transform method is the requirement for

linear spatial sampling at sufficiently close intervals to avoid spatial aliasing. In addition,

both the two-dimensional Fourier transform method and TFR methods result in a graphi-

cal representation of dispersion relations that requires additional post-processing, such as a

ridge-following algorithm, to extract useful estimates.

In all of the above approaches, the propagation distances are assumed known. Holland

et al. [94] demonstrated that the propagation distance can be estimated from a single re-

ceived guided wave signal via analysis of its TFR. Their method requires a search for the

distance that provides the best match between theoretical dispersion curves and features

of the TFR. The matching procedure was based upon a visual comparison and was not

automated.

With respect to the work presented in this text, it should be pointed out that with the

exception of the TFR methods, which are only capable of estimating group velocity, none

of the methods described here are capable of estimating dispersion relations in situ with

a sparse, distributed array. The two-dimensional FFT requires sampling at small spatial

intervals, which is impractical for a sparse array. Alternatively, the method proposed by

Hutchins [89], based on the approach of Sachse and Pao [87], effectively ignores any trans-

fer functions or time delays associated with electromechanical transduction and establish-

ment of the guided waves. While most likely similar in nature, the variation in transfer

functions do have a measurable impact on dispersion estimation, as will be demonstrated

in Chapter 5.

2.7 Guided Wave SHM

While the methods presented in Section 2.5 for guided wave NDE are capable of detect-

ing and localizing surface and subsurface features, such as geometric boundaries, they are
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unable to discern damage from geometric boundaries and lack sufficient dynamic range to

reliably detect relatively small defects or damage. Unlike traditional NDE methods, SHM

techniques can detect changes in a structure over time. This is often accomplished through

signal differencing, or baseline subtraction. Baseline subtraction isolates scattered energy

from defects or damage by subtracting known good baseline signals recorded prior to the

introduction of any damage from the experimental, or in-service, signals. This process of

baseline subtraction inherently assumes that any changes in the signals are related to dam-

age. Unfortunately, however, benign changes in the signal can result from a wide range

of factors, including both environmental factors and measurement variation (e.g. sensor

coupling, spatial registration, orientation, etc.).

One of the most dominant environmental effects on guided waves is that of temperature

changes [95]. Michaels and Michaels [4] used the short-time cross-correlation to calculate

features that discriminate between damage and benign environmental effects, such as tem-

perature. Croxford et al. [83] quantified the impact of baseline mismatch due to temperature

changes and related baseline mismatch to a system’s sensitivity to damage. The impact

of a homogeneous temperature change can be successfully modeled through appropriate

models of the sensors, their bonding, and the dispersive material properties [96]. Weaver

and Lobkis [97] observed in experimental measurements that the diffuse field exhibited an

almost pure dilation in time with temperature. From this observation, a baseline signal

stretch (BSS) algorithm was proposed by Lu and Michaels [98] for temperature compen-

sation whereby a global time-dilation is applied that scales the time axis by a linear factor.

The dilation factor can be determined from local time shifts as measured by the short-time

cross-correlation [98], or by determining the dilation factor that minimizes the residual af-

ter baseline subtraction [99]. The efficacy of the BSS method depends upon many factors,

including signal complexity and modal content, but in general suffers degraded perfor-

mance as temperature differences increase. Since the BSS method causes some undesired

changes in the propagating wavepacket, however, further improved results were shown to

15



be obtained by compensating for these changes through deconvolution if the propagating

wavepacket is known. Alternatively, the optimal baseline subtraction (OBS) algorithm is

a knowledge-based approach that stores a bank of baseline signals recorded over a range

of environmental conditions [98, 100, 95]. Test signals are then compared to each of the

baseline signals and the closest matching baseline signal is used for baseline subtraction.

Although proven effective over a broad range of temperatures (20◦-150◦) [101], the tem-

perature compensation performance of OBS is directly related to the number of baseline

signals employed over a range of environmental conditions. As the number of baseline sig-

nals is increased, however, so is the system storage and computational cost of comparison.

As such, the OBS algorithm has been combined with the BSS algorithm [98, 102, 103, 104]

to take advantage of the inherent benefits of OBS, while minimizing the computational and

storage requirements.

One method to minimize measurement variation is by permanently attaching sensors

to the structure. Permanently attaching sensors to the structure minimizes measurement

variation from coupling, spatial registration, and orientation. Depending on the applica-

tion, however, structural integration may present alternative challenges, such as limitations

on the number of sensors, associated wiring, etc. which are directly related to the sys-

tem, installation, and maintenance costs, as well as potential operational limitations on the

structure (e.g. aerospace applications can have very narrow weight margins). As such,

many research efforts, including the work presented here, have been evaluating the use of

permanently attached, distributed arrays of inexpensive piezoelectric sensors to perform

SHM.

Although tomographic techniques can be used with a small number of sensors, imaging

quality is highly dependent on the number of recorded signals and reported results are of-

ten shown with the input of thousands of signals, which is orders of magnitude more than

would be available with an economically feasible system of permanently attached sensors.

Techniques such as the reconstruction algorithm for probabilistic inspection of damage

16



(RAPID) method [105, 106] have been used successfully with far fewer sensors than tra-

ditional tomographic methods by employing signal differencing and spatially distributing

the corresponding signal difference coefficients. These tomographic methods, however, are

still limited to inspecting an area within a polygon and require a much larger number of

sensors than other alternatives.

In contrast to the tomographic techniques, inspection with a compact phased array un-

der far-field assumptions inspect areas far outside of the sensor polygon. As suggested by

Giurgiutiu [76] for addressing complex geometries, compact guided wave phased arrays

have also been used with differenced signals [107]. Since the focusing performance of an

array is directly related to the effective aperture size, a natural extension to the compact

phased array work is the use of larger apertures.

Distributed arrays were originally introduced by Heimiller in 1983 [108] for radar appli-

cations, but the concept is equally applicable to the problem of structural health monitoring

in plate-like structures. The general idea is to use a small number of randomly distributed

sensors to create a very large aperture array. Heimiller demonstrated that many of the spa-

tial ambiguities that result from large sensor spacings can be addressed through irregular

sensor spacings and highlighted the impact that positioning errors can have on array perfor-

mance. In 2000, Flaig and Arce [109] introduced the concept of spot-beamforming within

the near-field of distributed arrays, showing that a distributed array can be focused (or de-

focused) on an arbitrary point in space and proposed a technique for finding an optimal

arrangement of sensors. Flaig and Arce also suggest the use of high-resolution beamform-

ing algorithms to reduce the spatial aliasing inherent with distributed arrays.

In 2004, Wang et al. [110] demonstrated guided wave imaging in the near field of a

distributed array. The technique used by Wang used uniform aperture weighting, which is

typically referred to now as conventional delay-and-sum imaging or the ellipse method. In

this approach, each pixel value is based on the summation of the received signals at differ-

ent points in time. The specific times are a function of the total distance from transmitter,
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to pixel location, to receiver, and represent a generalization of the phased array imaging

algorithms to spherical or, in this case, cylindrical waves. The ellipse nomenclature is

derived from the fact that the locus of a constant time curve is an ellipse. Michaels and

Michaels [111] expanded the approach of Wang et al. to sum the signals over a time win-

dow of data, as opposed to a single point in time, establishing the pixel value as the energy

contained within the resulting summed signal. Michaels et al. [112] later demonstrated im-

proved imaging performance by applying an exponential window to each received signal

beginning at the time of the direct arrival. Finally, Michaels and Michaels [113] showed

that images generated from different frequency excitation signals could be fused to obtain

higher-quality images.

A third technique for guided wave imaging is the hyperbola algorithm [112, 114], which

applies the conventional delay-and-sum approach to cross-correlations between baseline

subtracted signals. The hyperbola nomenclature is used because the locus of constant time

differences between the same arrival at two receivers is a hyperbola. Because this method

groups receivers in pairs with a third transmitting transducer to obtain cross-correlation

information, there is a much larger number of contributing signals for imaging as compared

to the ellipse algorithm.

Recently, the use of time-of-flight techniques with a sparse, distributed array of sen-

sors has been proposed to generate damage maps based on the assumption that scattering

and possibly mode conversion occur when a guided wave interacts with damage (e.g., an

incident S0 mode scatters a portion of the incident energy as an SH0 mode [115]). The

difference in the time-of-arrival between each of the direct arrivals and scattered signals,

which can be measured by several different techniques [116, 117], is used to estimate the

propagation distances of the scattered signals. The estimated propagation distances are then

used in a localization algorithm to identify the scattering location [118, 119, 120, 121]. Al-

though these techniques have been successfully employed under laboratory conditions, the
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measurement of discrete arrival times is a non-trivial task. The measurement can be com-

plicated, or even prohibited, by the overlap between the direct arrival and scattered signals,

interference from geometric reflections, and dispersive effects.
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CHAPTER III

STATE OF THE ART

This chapter introduces the reader to some of the challenges encountered in in situ guided

wave imaging and describes the algorithms representing current state of the art. Specif-

ically, the optimal baseline subtraction (OBS) and baseline signal stretch (BSS) methods

will be described for reducing baseline subtraction residual, the conventional delay-and-

sum imaging algorithm will be presented, and finally, dispersion compensation methods

will be discussed for addressing the frequency-dependent propagation velocities.

3.1 Experimental and Simulation Setup

The algorithms presented in this chapter, as well as those described in later chapters, will

be presented using both simulation and experimental data from a 914 mm × 914 mm ×
3.18 mm aluminum 6061 plate with six permanently attached, identical PZT transducers,
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Figure 3.1: Experimental setup. A sparse, distributed array of six transducers are attached
to a 914 mm × 914 mm × 3.18 mm aluminum plate. A through-hole and two notches at
±45◦ are introduced at the indicated locations to simulate damage.
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shown in Figure 3.1. The size of the plate was chosen to be sufficiently large to demon-

strate the feasibility of the proposed algorithms, yet small enough to be practical within

the QUEST laboratory. Although experimental data will be presented for validation pur-

poses, simulation data is often employed to demonstrate algorithms without the additional

complications of realistic systems.

All simulations are performed with MATLAB (The Mathworks, Natick, MA). For sim-

plicity, transducers are modeled identically and are capable of coupling the excitation signal

into an isotropic guided wave without attenuation, phase changes, or time delays. A ray-

tracing model with the method of images is used to account for edge reflections, which

are simulated as non-absorbing with the reflected wave 180◦ out-of-phase with the incident

wave. Scattering characteristics are based on through-hole scattering fields generated us-

ing the low frequency approximation derived by Grahn [122] for 300 kHz S0 incident and

scattered waves. Scattered energy from damage is assumed to be sufficiently small so that

multiple scattering effects can be ignored. All simulations assume a noise-free environ-

ment.

Although six transducers allow for 30 different combinations (6 (6 − 1) = 30), ideal

reciprocal pairs produce identical results. So, only one signal from each unique transmitter-

receiver pair is used, resulting in 15 signals. Data collection was performed in the following

round-robin fashion: 1 → 2, 1 → 3, · · · , 5 → 6, where 1 → 2 indicates Transducer 1 was

used to transmit and Transducer 2 to record the signal.

A block diagram of the experimental setup is shown in Figure 3.2. Signals are ex-

cited using an 33250A Arbitrary Waveform Generator (Agilent Technologies Inc., Santa

Clara, CA), which controls the pulse repetition frequency and excitation waveform. Mea-

surements are obtained with a TDS5034B Digital Phosphor Oscilloscope (Tektronix Inc.,

Beaverton, OR) after amplification with a 5072PR (Olympus NDT Inc., Waltham, MA). A

custom multiplexor, designed and developed in the QUEST Laboratory at Georgia Tech,
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Figure 3.2: Block diagram of experimental setup. Solid lines indicate data flow, dotted lines
represent control signals. GT Multiplexor is a bank of relays that is capable of connecting
any of the six transducers to either of the two front-panel connectors, corresponding to the
arbitrary waveform generator and amplifier, respectively.

was used to provide consistent, reliable switching between transducer pairs. The multi-

plexor was controlled via USB through a LabView (National Instruments Corp., Austin,

TX) script running on the Windows XP operating system (Microsoft Corp., Redmond,

WA) of the oscilloscope. The LabView script, which was developed by other past and

current members of the QUEST Lab, also controlled the data acquisition functions of the

oscilloscope.

The experiment was conducted as follows. First, 209 baseline datasets were recorded

under known damage-free conditions over a range of temperatures that spanned 15◦ C.

After collecting baseline data, a through-hole with a radius of 5 mm was drilled to simulate

damage at the location indicated at Figure 3.1, and datasets were again recorded over a

range of temperatures. Then, a 15 mm × 2 mm × 3.18 mm notch oriented +45◦ from

horizontal was introduced in the lower-right corner of the plate. Several datasets were

then collected at room-temperature. Finally, a second 15 mm × 2 mm × 3.18 mm notch

was introduced near the center of the plate, this time oriented -45◦ from horizontal. A

final set of data was then obtained at room temperature, completing the experimental data

acquisition.

Each of the six piezoelectric transducers measured 12 mm in diameter and was excited
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with a chirp excitation. The chirp pulse had a 10 V peak to peak amplitude and increased

in frequency linearly from 40 kHz to 600 kHz over a 200 μs period. The pulse repetition

frequency was 10 Hz, which allowed the propagating waves in the plate to essentially die

out between excitations.

The use of a chirp excitation allows a significant amount of energy to be transferred

into the material over a relatively long time-window without high voltages or excessive

displacement. This is in contrast to the traditional use of an impulse function, which in-

duces much larger displacements using hundreds or thousands of volts over a much shorter

period of time. The ability to transfer roughly the same amount of energy into the plate

with a 10 V peak-to-peak signal allows for a comparable signal-to-noise ratio (SNR) to be

obtained without special equipment or high-voltage concerns.

Since the mechanical waves have relatively small displacements, particularly since a

chirp excitation is used, the interrogation system can be treated as a linear, time-invariant

(LTI) system. The waveform generator produces an excitation signal, which is translated

to mechanical energy by the transducer. The plate itself introduces a transfer function

that converts the mechanical vibrations from the transducer to a guided wave. Finally, the

receiving transducer transfers the surface vibrations of the guided wave to an electrical

signal, which is recorded by the oscilloscope.

The trade-off for using an excitation signal that is not time-compact is a reduction in

spatial resolution. Since the system can be treated as LTI, however, the chirp excitation

can be “shaped” to produce an arbitrary waveform that is more compact in time with a

bandwidth that is contained within the bandwidth of the chirp signal [123]. Throughout

this work, deconvolution of the chirp signal is performed in the frequency domain through

frequency domain division. Additional band-pass filtering and/or pulse shaping with a fi-

nite impulse response (FIR) filter is typically performed in combination with the frequency

domain division to address the numerical instability associated with division by small num-

bers.
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3.2 Primary Guided Wave Challenges

Although sparse, distributed arrays of ultrasonic guided waves present an economical solu-

tion to interrogation of large, plate-like structures, there are significant challenges associ-

ated with this approach. This section illustrates some of these challenges using experimen-

tal data obtained from the setup described in the previous section.

3.2.1 Dispersion

The propagation velocities of guided waves are frequency-dependent. This phenomenon,

referred to as dispersion, causes the waves to change shape as they propagate through the

material.

Dispersion can be expressed in one of two forms, although a third is sometimes used

as well to express a subset of the dispersive behavior. The relationship between propa-

gation velocity and frequency can be expressed as a frequency-dependent phase velocity,

cp (ω), expressed in mm/μs, or as a frequency-dependent wavenumber, k (ω), expressed in

rad/mm. The two are related to one another through the following relationship:

cp (ω) =
ω

k (ω)
, (3.1)

where ω is the angular frequency, usually in rad/μs. Phase velocity refers to the propaga-

tion velocity of constant phase, which, for dispersive waves, is slightly different from the

velocity of the wavepacket itself. The wavepacket propagates at the group velocity, cg (ω),

which is the third representation of dispersion and is analogous to the velocity of energy

transport [124]. Group velocity is related to the wavenumber through this equation:

cg (ω) =
dω

dk (ω)
. (3.2)

If the media is non-dispersive, then cp (ω) = cg (ω), which is only true if k (ω) is some

linear multiple of ω. Note that since cg (ω) is related to the inverse of the derivative of the

wavenumber with respect to frequency, neither the wavenumber nor the phase velocity can

be uniquely determined from the group velocity alone. Figure 3.3 and Figure 3.4 illustrates
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Figure 3.3: Nominal group (a) and phase (b) velocities in a 3.18 mm thick aluminum plate
for several symmetric (solid lines) and asymmetric (dotted lines) propagating modes.

the group and phase velocity (Figure 3.3) and corresponding frequency-wavenumber re-

lationships (Figure 3.4), or ω–k relationships, for several modes that are applicable to the

experimental setup considered here.

In a LTI system model for guided waves, the measured data from an ultrasonic trans-

ducer, M (ω), can be represented in the frequency domain as:

M (ω) = X (ω)

(
1√
x

)
e− jk(ω)x, (3.3)

where X (ω) is the propagating wave packet, the 1√
x

accounts for the geometric spreading

loss, and the complex exponential accounts for dispersion with j =
√−1 and k (ω) rep-

resenting the frequency-dependent wavenumber. Note that if the wavenumber is a scalar
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Figure 3.4: Nominal frequency-dependent wavenumbers in a 3.18 mm thick aluminum
plate for several (solid lines) symmetric and (dotted lines) asymmetric propagating modes.
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Figure 3.5: Dispersion in the experimental data. (a) Waterfall plot of 7-cycle 300 kHz
toneburst. (b) Group and phase velocity curves for the S0 mode.

multiple of frequency, meaning k (ω) = αω, then the above equation decomposes to a

non-dispersive case:

M (ω) = X (ω)
(

1√
x

)
e− jωt, (3.4)

where t = αx, which is equivalent to a frequency-independent group velocity, cg =
1
α
.

To illustrate the effects of dispersion, consider the waterfall plot shown in Figure 3.5a.

The waterfall plot shows each of the signals recorded from the distributed array in Fig-

ure 3.1 arranged vertically by the distance between transducers. Each of the signals is

scaled for visibility, so the relative amplitude of each displayed waveform is similar. In

order to highlight the dispersive behavior of the propagating wave, the chirp excitation was
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deconvolved from each recorded signal and a 7-cycle Hamming-windowed sinusoid with

a 300 kHz center frequency was convolved with the result to produce a narrowband tone-

burst. From Figure 3.5a, the direct arrival is clearly changing as it propagates, increasing

in duration, and although it cannot be inferred from the display, in addition to loss due to

geometric spreading, the law of conservation of energy dictates that the amplitude must

further decrease as the waveform spreads in time.

Figure 3.5b shows the nominal group and phase velocities for the S0 mode. Since

the group velocity is equivalent to the energy transfer velocity, bounds on the time-of-

arrival can be established for a propagating wavepacket by evaluating the group velocity

values [81]. A 7-cycle Hamming-windowed sinusoid at 300 kHz has a main lobe that spans

213 kHz to 387 kHz. Therefore, the energy transport of the wavepacket will range from

5.0 mm/μs (cg (213 kHz)) to 5.4 mm/μs (cg (387 kHz)). As a result, a 23 μs toneburst prop-

agating along the plate will last 27 μs after propagating 236 mm and 33 μs after 667 mm.

These bounds are illustrated in Figure 3.5a. Since the phase velocity is much higher than

the group velocity (5.3-5.4 μs), the individual waves, or points of constant phase, within

the wavepacket will appear to move faster than the wavepacket itself.

Dealing with the effects of dispersion is a challenging task that is discussed throughout

this work. It is important to point out, however, that it is possible to minimize the degree

of dispersion by selecting an operating spectrum that spans a relatively narrow range of

propagation velocities [81], either by using a narrow bandwidth signal or carefully choosing

the operating frequency. In many cases, however, dispersion is unavoidable and as such,

must be addressed through the methods presented later in this text.

3.2.2 Multi-mode

Another challenge inherent in guided wave systems is the existence of multiple propagating

modes. The presence of more than one propagating mode is problematic for guided wave

imaging algorithms because each mode propagates at a different velocity. The difference
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Figure 3.6: Mode excitability of experimental data as a function of frequency. Signals were
excited from transducer 1 and recorded from transducer 2.

in group and phase velocity for several modes can be seen in Figure 3.3.

In addition to the propagation velocity, each mode also distributes the propagating en-

ergy differently through the thickness of the plate. This, in turn, makes each mode respond

to a defect or damage differently. As such, there is no easy answer as to which propagat-

ing mode is “best” for detecting damage, and the most appropriate mode depends on the

application. The reader is referred to chapter 8 of [124] for through-thickness profiles for

several modes.

From Figure 3.5b, note that although multiple modes are indicated for all frequencies,

only two modes exist below the cutoff frequency of the A1 mode. As such, one of the most

common methods to address the issue of multiple modes, and the one used throughout this

text, is to operate at frequencies at or below the A1 cutoff frequency, which is 486 kHz here.

One mechanism to further improve mode purity is to take advantage of the fact that

for any particular system, the excitability of each mode varies with frequency. In other

words, the energy coupling between transducer and each guided wave mode is not neces-

sarily equal and the energy coupling ratio changes with frequency. Therefore, improved

mode purity can be obtained by operating at frequencies that asymmetrically couple to the

propagating mode of interest.

Figure 3.6 demonstrates the existence of multiple modes and the variation in excitability
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Figure 3.7: Experimental data color-coded for temperatures ranging from 33◦-38◦ for sev-
eral different time-windows. Signals were excited from transducer 1 and recorded from
transducer 2.

of these mode. The signals in Figure 3.6 all correspond to experimental data excited with

transducer 1, recorded with transducer 2, and filtered with 7-cycle tonebursts of various

frequencies, which are indicated by the vertical offset of each result. From Figure 3.6, one

can see that for this particular setup, the A0 mode is dominant at 100 kHz, while the S0

mode is dominant at 400 kHz.

3.2.3 Environmental Effects

As pointed out in the previous chapter, the effects of temperature on ultrasonic guided

waves are well documented. Figure 3.7 illustrates the effects of benign environmental

changes, such as temperature, for the experimental setup considered here for signals excited

by transducer 1 and recorded with transducer 2.

Figure 3.7 shows that the signals appear to be “stretched”, with the signal differences

increasing with time. The changes visible in Figure 3.7 far exceed those of a defect or

damage, which are typically very small compared to the structural echoes (one to three

orders of magnitude smaller, see Figure 3.8). Therefore, it is critical for any ultrasonic

SHM system to address the issue of environmental changes.
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3.3 Baseline Subtraction

SHM applications, by their very nature, are primarily interested in changes to the inter-

rogation structure. As such, baseline subtraction, which is the act of differencing known

good baseline data and test data obtained after some service period, is commonly used in

these applications. Damage detection and localization is then performed under the inherent

assumption that any baseline subtraction residual is due to the introduction of a defect or

damage.

Unfortunately, not all changes in the recorded data are due to defects or damage. Benign

environmental changes can cause significant variations in recorded data since temperature,

pressure, humidity, and load differences can affect the transducer transfer functions, ex-

citability of guided wave modes, frequency-dependent propagation velocity (dispersion),

and scattering behavior of structural components. Of these environmental influences, tem-

perature changes have been shown to have a significant impact on baseline subtraction

[95]. Temperature changes are primarily manifested in guided wave measurements as vari-

ations in the transducer transfer functions, the dispersive properties of the material, and

even propagation distances due to thermal expansion and contraction. Thus, temperature

changes are used throughout this work as a representative case for significant environmen-

tal changes. To minimize these changes, two methods are typically used in combination:

optimal baseline subtraction and baseline signal stretch.

3.3.1 Optimal Baseline Subtraction

Optimal Baseline Subtraction (OBS) minimizes baseline subtraction residual by collecting

baseline data over a wide range of potential environmental conditions, producing a large

database of baseline datasets. Since each dataset is collected under damage-free condi-

tions, this knowledge-based approach is able to accommodate any source of benign signal

changes, including not only changes in dispersion, but also mode excitability, transducer

transfer functions, propagation loss, etc.
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It should be pointed out that errors in environmental condition measurement (such as

temperature, pressure, humidity, etc.) can result in the selection of a sub-optimal dataset.

As such, baseline datasets are typically selected based on an adaptive comparison between

the test signal and some subset of baseline signals, rather than measurements of the envi-

ronmental conditions. Depending on the size of the subset, however, this can be a compu-

tationally demanding requirement.

Taking the concept of OBS to an extreme, if a baseline dataset is available at any arbi-

trary set of environmental conditions, then perfect baseline subtraction could conceivably

be achieved. In reality, however, collecting and storing a set of baseline data for every pos-

sible combination of environmental conditions is impractical. To minimize computational

and storage requirements, it is desirable for the number of baseline datasets to be kept to

a minimum. Obviously, if OBS is to be used, some balance must be established between

the tolerance for baseline subtraction error and computational and storage demands. Crox-

ford et al. [104] addressed this question, and provided some quantitative guidance as to

the baseline subtraction residual that can be expected from a given temperature spacing

between baseline datasets.

3.3.2 Baseline Signal Stretch

Baseline signal stretch (BSS) is another technique that has been proposed to minimize the

baseline subtraction residual that results from small environmental changes. Since the al-

gorithm is only realistically capable of addressing relatively small environmental changes,

the BSS algorithm has been proposed as a secondary algorithm to augment an OBS imple-

mentation [102, 103, 104]. It should be noted that the BSS algorithm does not require any

additional measurements or a priori information.

The BSS algorithm seeks to compensate for a slight change in propagation velocity.

Consider a non-dispersive media with the following propagation model, equivalent to (3.4):

M (ω) = X (ω)

(
1√
x

)
e− j ωcg

x
. (3.5)
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For small environmental changes, the most significant effect is on propagating velocity.

Therefore, two signals recorded under different environmental conditions can be repre-

sented as follows:

Ma (ω) = X (ω)
(

1√
x

)
e− j ωca

x, (3.6)

Mb (ω) = X (ω)

(
1√
x

)
e− j ωcb

x
, (3.7)

where ca and cb are the group velocity values for each measured signal. Note that thermal

expansion and contraction will also change x slightly, however, this effect is negligible for

the test cases considered throughout this work and is therefore ignored. To compensate for

the difference in group velocity, the BSS algorithm resamples one of the frequency domain

signals by a factor of αBSS, where αBSS is chosen to minimize the difference between the

two signals:

αBSS = min
α

∫
|Mb (ω) − Ma (αω)|2 dω. (3.8)

This approach has been shown to produce significant improvements for α values that are

very close to ’1’, which is the case for very small environmental changes. As α deviates

from unity, however, the frequency domain scaling begins to have an effect on the X (ω)

term in addition to the propagation term. This phenomenon effectively limits the amount

of compensation that can be achieved, even in a non-dispersive media. As such, the com-

bination of OBS and BSS seems a natural combination.

Figure 3.8 shows baseline subtraction results from transducer pair 1-5 at 22.2◦ C with

scattering from the 5 mm through-hole highlighted in gray. Figure 3.8a shows four over-

lapping signals that are all in very close agreement: (1) baseline data recorded at 22.7◦ C,

(2) the OBS-selected baseline, (3) the test data, and (4) the test data after BSS to match the

22.7◦ C baseline data. Figure 3.8b highlights the difference between these signals by dis-

playing three baseline subtraction results: (1) subtraction of the 22.7◦ C baseline data from

test data, (2) subtraction of the 22.7◦ C baseline data from the BSS stretched test data, and

(3) subtraction of the OBS baseline from the test data. For this particular set of data, the

32



0 50 100 150 200

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (μs)

A
m

pl
itu

de

 

 

22.7°C Baseline
OBS Baseline

22.2°C Test
BSS Test

(a)

0 50 100 150 200
−5

0

5
x 10

−3

Time (μs)

A
m

pl
itu

de

 

 

0.5°C
BSS
OBS

(b)

Figure 3.8: Experimental baseline subtraction data for transducer pair 1-5. Scattering from
a 5 mm through-hole is highlighted in the grey region. (a) Baseline data recorded at 22.7◦ C,
baseline data selected through the OBS algorithm, test data recorded at 22.2◦ C, and test
signals after BSS algorithm to match 22.7◦ C baseline. (b) Baseline subtraction results for
test signal and 22.7◦ C baseline signal, BSS test signal and 22.7◦ C baseline signal, and test
signal and OBS baseline signal.

BSS algorithm does not improve upon the OBS performance and is therefore not shown

since the results are identical to those of OBS. It is important to point out that the peak

amplitude of the scattered energy from the 5 mm through-hole is ∼ 1/30 the amplitude

of the direct arrival, which illustrates the sensitivity of the baseline subtraction operation.

From Figure 3.8b, one can see that the scattered energy from damage has the same order

of magnitude as the baseline subtraction residual from the direct arrival.

3.4 Conventional Delay-and-Sum Imaging

Conventional delay-and-sum imaging, also referred to as elliptical imaging, is a commonly

employed guided wave imaging algorithm [82]. To motivate the need for algorithmic im-

provements, this section describes the algorithm and provides some representative results.

Note that although the work is presented in the context of spatially distributed array ele-

ments, it is equally applicable to compact array geometries. For readability, the algorithm

described in this section will be referred to as simply “conventional imaging” throughout

the remainder of this text.

We first consider the case whereby the envelopes of the scattered signals are used for
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imaging. The envelope is obtained by taking the absolute value of the analytic representa-

tion of the baseline subtracted, or differenced, signal:

sENV
i j (t) =

∣∣∣si j(t) + jŝi j(t)
∣∣∣ , (3.9)

where si j(t) is the differenced signal excited with the ith transducer and received at the jth

transducer, ŝi j(t) is the Hilbert transform of the RF scattered field, and sENV
i j (t) is the enve-

lope signal. For discussion purposes, this section assumes that perfect baseline subtraction

is achieved, resulting in differenced signals comprising only the scattered field from the

damage. As such, results are shown for simulated data.

Combining the imaging concepts of Wang et al. [110] and Michaels and Michaels [111],

pixel values for conventional imaging are defined as:

Px,y =

∫ ∣∣∣∣∣∣∣
ns−1∑
i=1

ns∑
j=i+1

ei jxy si j

(
t +

dixy + djxy

cg

)∣∣∣∣∣∣∣
2

w(t)dt, (3.10)

where w(t) is a windowing function, dixy is the distance from the ith transducer to the pixel

location (x, y), cg is the group velocity, and ei jxy is a weighting coefficient specific to the

pixel location and transmitter-receiver pair. The signals si j (t) are the differenced signals in

either RF or envelope format.

At this point, it is desirable to simplify the notation in (3.10). First, it is possible to

replace the dual summation with a single summation of nm terms by re-indexing each term

as appropriate:

Px,y =

∫ ∣∣∣∣∣∣∣
nm∑

m=1

emxysm

(
t +

dmxy

cg

)∣∣∣∣∣∣∣
2

w(t)dt. (3.11)

The summation can be described in vector format as a function of the weighting coeffi-

cients:

Px,y =

∫ ∣∣∣∣�e H
xy�sxy(t)

∣∣∣∣2 w(t)dt, (3.12)

where the superscript “H” indicates the Hermetian transpose operation. The first term in

the right-hand-side of (3.12), �exy, is a column vector containing the weighting coefficients.
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Figure 3.9: Propagation paths for three selected transducer pairs for (a) pixel location (a,b)
and (b) pixel location (c,d).

The second term contains the back-propagated signals, �sxy(t), organized as:

�sxy(t) =
[

s1

(
t + d1xy

cg

)
· · · snm

(
t + dnmxy

cg

) ]T

. (3.13)

To facilitate discussion in the context of MVDR, �exy is referred to as the "look direction."

Throughout this text, it is assumed that �exy is normalized to have unit L2 norm. After

expanding the squared term of (3.12) into two complex conjugate terms, (3.12) can be

simplified to:

PDS
xy = �e

H
xySxy�exy. (3.14)

In (3.14) the [nm × nm] spatiotemporal correlation matrix, Sxy, is calculated over the time-

window of interest:

Sxy =

∫
�sxy (t)�sH

xy(t)w(t)dt. (3.15)

From (3.14) and (3.15), the pixel value, PDS
xy , is maximized when the back-propagated

signal vectors,�sxy(t), are scalar multiples of the look direction, �exy, since their inner product

will be maximized.

The two diagrams in Figure 3.9 show the propagation paths for three of the 15 unique

transmitter-receiver pairs. Figure 3.9a depicts the paths for location (a, b) and Figure 3.9b
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Figure 3.10: Differenced (top) and back-propagated (middle and bottom) signals.

depicts the corresponding paths for location (c, d). The envelopes of the received, differ-

enced simulated signals for the three transmitter-receiver pairs of Figure 3.9 are shown in

the top plot of Figure 3.10. Back-propagated signals for pixel locations (a, b) and (c, d),

shown in the middle and bottom plots of Figure 3.10, are clearly different. Back-propagated

signals at the damage location, (c, d), all have similar appearance and depict scattered en-

ergy at time t = 0, which is clearly not the case for the back-propagated signals at the

non-damage location, (a, b). As a result, the pixel value for (c, d), when calculated as per

(3.14), is expected to be higher than that for (a, b) or any other non-damage location.

Figure 3.11 shows the image generated using conventional imaging with a time window

of 12 μs, spanning from t = −6 μs to t = +6 μs, and with the weights inversely proportional
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Figure 3.11: Conventional imaging using simulated envelope signals. (a) Image displayed
using a 20 dB scale, and (b) normalized pixel values versus distance for damage location
(ĉ = 2.77).

to the square-root of the product of the propagation distances:

�exy ∼
[

1√
d×1xy

. . . 1√
d×nmxy

]T

, (3.16)

where d×mxy is the product of the distances dixy and d jxy associated with the mth transducer

pair. The multiplication of propagation distances is necessary to accurately reflect the geo-

metric spreading from both the source and the scatterer. Note that the weights are selected

to maximize the pixel value at the damage location by matching the anticipated amplitude

relationship between signals in the back-propagated signal vectors, �sxy(t).

In Figure 3.11a, and throughout the entirety of this thesis, images are shown on a 20 dB

scale, with the color scale aligned so that the peak value within a 15 mm radius of the known

damage location corresponds to the top of the color bar. The 15 mm radius was chosen so

that minor localization errors are ignored. Figure 3.11b is a plot of the pixel values of

Figure 3.11a as a function of distance from the simulated damage location. For the case

when more than one pixel is located a specific distance from the true damage location, all

of the pixel values are plotted, which results in a vertical distribution of points that extends

from the smallest pixel value at that distance to the largest. The values are normalized so

that the maximum pixel value within a 15 mm radius of the damage site is one. A perfect
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image would have a pixel value of one at a distance of zero and all other pixel values would

be zero.

Figure 3.11a illustrates the difficulty associated with conventional guided wave imag-

ing. The edge reflections are causing imaging artifacts that are as large as the damage site,

and in some cases the artifacts are even three times the magnitude of the damage. As such,

damage detection and localization cannot be performed with Figure 3.11a. It should be

pointed out that the imaging performance is expected to improve if the plate were larger,

reducing the number and amplitude of edge reflection, or if the damage were located further

away from the edge, for example, inside the polygon of sensors.

To effectively compare and contrast imaging performance throughout this text, it is use-

ful to establish a single quantitative measure of performance. Previously reported figures

of merit, such as described in [113], do provide a means to evaluate images; however, it is

desirable to characterize the quality of an image with a single scalar value.

A performance metric is proposed here that takes into account artifact amplitude, dis-

tance from damage, and overall noise floor. The proposed metric is the exponential coeffi-

cient that results from a least-squares exponential curve fit to the pixel values, arranged as

a function of distance from the damage location:

P(x)
P(0)

∼ e−ĉx for x ∈ X, (3.17)

where P(x) is the pixel value as a function of distance from the known damage location,

X is the set of all distances. This metric was chosen because it provides a single value

that (1) increases (decreases) as the damage location becomes more focused (defocused),

(2) increases (decreases) as the overall noise floor is lowered (raised), and (3) increases

(decreases) as artifacts are moved towards (away from) the true damage site. In other

words, the larger the value of c, the closer the image is to perfect (a single non-zero pixel

value at the damage site), and artifacts are penalized more the further they are located from

the true damage site. To find ĉ and establish the performance metric, a least-squares fit is
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performed on the logarithmic values as:

ĉ = arg min
c

∑
x∈X

(
ln

(
P(x)
P(0)

)
+ cx

)2

. (3.18)

It is also important to note that this metric is only valid if the damage location is precisely

known, such as for simulations and controlled experiments. Although this restriction limits

widespread applicability, it still provides a mechanism for quantitatively comparing images

and algorithms. The exponential curve overlaid on Figure 3.11b represents the curve that

minimizes the performance metric of (3.18), which corresponds to ĉ = 2.77.

3.5 Dispersion compensation

As discussed in Section 3.2, ultrasonic guided waves are typically dispersive, which causes

the shape of a wavepacket to spread out as it travels over distance. As such, dispersion

compensation improves imaging performance through two effects. First, dispersion com-

pensation compensates for the dispersive spreading effects, increasing the amplitude of and

similarity between back-propagated wavepackets and therefore improving imaging perfor-

mance. Second, since each mode propagates according to a different set of dispersion

relations, dispersion compensation for one mode has a tendency to spread out signals that

propagate according to other dispersion relations, which improves imaging performance

when multiple modes are present in recorded data.

In (3.11) and (3.13), back-propagation of the differenced signals was performed through

a simple time-shift. However, this method of back-propagation does not account for the

effects of dispersion. Note that any of the back-propagated signals from (3.11) can be

expressed in the frequency domain as:

Ŝ (ω) = S (ω) e+ j ωcg
d
, (3.19)

where S (ω) is the differenced signal and Ŝ (ω) is the frequency domain representation

of the back-propagated signal, equivalent to the frequency domain representation of any

of the vector elements expressed in (3.13). To perform back-propagation with dispersion
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compensation, however, the back-propagation operation must account for the frequency-

dependence of the wavenumber:

Ŝ (ω) = S (ω) e+ jk(ω)d, (3.20)

which must be performed in the frequency domain and requires explicit knowledge of the

dispersion relations, which are expressed as k (ω) here.

Even if the dispersion relations are known, the frequency domain back-propagation al-

gorithm requires nw complex multiplications (where nw is the number of frequency domain

values) and an inverse FFT operation for each measured signal at each pixel, which is an

incredible computational burden. Since the envelope of the time domain signals effectively

masks the effects of dispersion, the benefits of performing dispersion compensation do not

justify the computational costs. As such, this algorithm is not typically used in guided wave

imaging applications.
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CHAPTER IV

MINIMUM VARIANCE IMAGING

Traditional guided wave imaging naturally lends itself to the use of modern multi-channel

estimation techniques, such as Minimum Variance Distortionless Response (MVDR) [47],

also known as Capon’s Method [45]. In this chapter the mathematical basis for minimum

variance imaging is presented, additional techniques for imaging improvements are pro-

posed, and a brief discussion is provided with experimental results. Large portions of this

chapter can be found in Hall and Michaels [125, 126], which is a culmination of the work

reported in [127, 128]. The approach has been applied to both isotropic aluminum struc-

tures [125] (shown here) as well as quasi-isotropic carbon fiber reinforced polymers [129].

4.1 Mathematical Basis of MVDR

To begin, consider the following eigendecomposition of the correlation matrix in (3.15):

Sxy =

nm∑
i=1

λi�vi�v
H
i , (4.1)

where λi are eigenvalues and �vi are unit-norm eigenvectors specific to the correlation matrix

Sxy. Since the correlation matrix is Hermetian symmetric, each eigenvalue is non-negative

and the eigenvectors are orthogonal to one another. Throughout this chapter, the eigenval-

ues are assumed to be ordered from largest to smallest, so �v1 will always be the eigenvector

corresponding to λ1, the largest eigenvalue.

Consider the set of back-propagated signals corresponding to a pixel location that ex-

actly coincides with a scattering location, such as the back-propagated signals for (c, d) in

Figure 3.9b. For an ideal scatterer and no additional echoes, each back-propagated signal

comprises a common signal, x(t), that is zero outside of the window of interest and scaled

41



according to some relationship, ŝcd, which is constrained to have unit-norm:

�scd(t) = x(t)ŝcd. (4.2)

From the eigendecomposition of the correlation matrix for this simple case, the unit-norm

relationship between signals, ŝcd, is equal to �v1, the energy of x(t) is equal to λ1, and all

other eigenvalues are zero:

Scd =

∫
|x(t)|2w(t)ŝcd ŝH

cddt = λ1�v1�v
H
1 . (4.3)

By substituting (4.3) into (3.14), one can see that the pixel value PDS
cd is maximized at a

value of λ1 when �ecd = �v1 = ŝcd and minimized at a value of 0 when �ecd ⊥ �v1. In other

words, if the look direction, �ecd, accurately reflects the amplitude relationship between

signals, the pixel value is maximized.

To reduce image artifacts, it is desirable to minimize the pixel value for any location

that does not correspond to damage. By assuming that the look direction, �exy, represents

the amplitude relationship between signals in the case that damage is present at a pixel

location, such as in (3.16), a constrained optimization problem can be constructed:

�wxy = min
�w
�wHSxy�w such that �wH

�exy = 1. (4.4)

In words, the constraint of the inner product of �w and �exy preserves the pixel value when

damage is present at (x,y) and the min
�w
�wHSxy�w term minimizes the pixel value when dam-

age is absent.

The preservation of pixel values by the constraint can be made clear with a brief exam-

ple. Recall that the pixel value at (c, d) described in the previous section is maximized at a

value of λ1 when �ecd = ŝcd = �v1. Substituting (4.3) into the min term of (4.4) and replacing

�v1 with �ecd yields,

�wHScd�w = λ1|�wH
�ecd |2. (4.5)

Therefore, by constraining the inner product of �w and �exy to have unit value in (4.4), the

pixel value at damage locations is preserved at a value of λ1.
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The optimal solution to this minimization problem can be found through the use of a

Lagrange multiplier, α, to satisfy the look direction constraint,

L = �wHSxy�w + α
(
�wH
�exy − 1

)
. (4.6)

The Lagrangian L is minimized by taking the derivative of (4.6) with respect to �w and

setting it equal to zero, which results in:

�w = −α
2

S−1
xy�exy. (4.7)

By substituting (4.7) for �w into the inner product constraint of (4.4), α can readily be shown

to be:

α = − 2

�e H
xyS
−1
xy�exy

. (4.8)

By further substituting (4.8) for α back into (4.7), a closed-form expression for �wxy that

satisfies (4.4) is obtained as a function of �exy:

�wxy =
S−1

xy�exy

�eH
xyS
−1
xy�exy

. (4.9)

Using this equation, �wxy can be computed at each pixel location.

Minimum variance imaging is performed in a similar fashion to conventional imaging;

however, instead of using the look direction directly, the optimal weights, �wxy, are calcu-

lated and used:

PMV
xy = �w

H
xySxy�wxy, (4.10)

where �wxy is computed as in (4.9), satisfying (4.4).

It is important to point out that a matrix inversion is required to calculate each pixel

value. The matrix inversion operation is responsible for the bulk of the computational

complexity of minimum variance imaging. Assuming that Gauss-Jordan elimination is

used for the matrix inversion, the computational complexity of obtaining each pixel value

is O(n3
m) [130]. Also, for reasons discussed in the following section, the autocorrelation

matrix is diagonally loaded by a factor of 0.1 times the largest eigenvalue prior to the

inversion operation.
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Figure 4.1: Minimum variance imaging using simulated envelope signals. (a) Image dis-
played using a 20 dB scale, and (b) normalized pixel values versus distance for damage
location (ĉ = 11.13).

Figure 3.11 and Figure 4.1 show imaging performance for both conventional imaging

and MVDR using the same �e as given in (3.16). Visually, Figure 4.1 clearly identifies the

damage location with significantly reduced artifacts compared to Figure 3.11.

Note that the MVDR approach to imaging is an optimal solution to (4.4). As such,

since (4.4) constrains the weights to reduce any energy that is not in the look direction, a

reduction in artifact amplitudes should be expected over conventional imaging using the

same look directions.

4.2 Modeling Errors and Regularization

Although MVDR offers substantial improvement over conventional imaging, careful con-

sideration must be given to the operating environment and the implications of inaccurate

modeling assumptions. Errors in transducer locations, transducer phase and gain differ-

ences, and inaccuracies inherent in the sampled approximation to the covariance matrix all

constitute modeling errors that can severely degrade algorithmic performance if they are

not accommodated.

As shown in [30], as signal-to-noise ratios increase, adaptive methods such as MVDR
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become increasingly sensitive to modeling errors. This sensitivity is in contrast to conven-

tional imaging techniques that become less sensitive to modeling errors as signal-to-noise

ratios increase. To address this problem, regularization of the matrix inverse in (4.9) is

performed using diagonal loading [131], which is shown to be optimal for a number of

constrained optimization problems [132], including (4.9), and also addresses the scenario

when an insufficient number of samples are used to generate the covariance matrix. The

degree of diagonal loading can be described as some fractional value, α, of the largest

eigenvalue, λ1:

S−1
xy =

(
Sxy + αλ1Im

)−1
, (4.11)

where Im is an [nm×nm] identity matrix. Bounds can then be established for α, as described

in [30]:
1
nm

<
λ1

αλ1 + σ2
nm

<
1
ε

(4.12)

Here σ2
n is the average noise power observed across all differenced signals and ε is the

degree of modeling error present in the unit look direction, �exy. The modeling error is

quantified by the norm of the difference between the nominal look direction, �exy, and the

"true" or "actual" look direction, ŝxy, which accurately reflects the underlying signal rela-

tionships within the received signals:

ε = ‖�exy − ŝxy‖. (4.13)

Since both vectors are constrained to have unit norm, ε will be in the range: 0 ≤ ε ≤ 2.

Rearranging (4.12) to solve for α and assuming a large signal-to-noise ratio (λ1 � σ2
n)

reveals:

ε ≤ α < nm. (4.14)

The lower bound for α ensures that sufficient regularization is present to accommodate

potential error in the look direction, while the upper bound prevents the regularization

noise, αλ1, from unnecessarily degrading performance.
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Figure 4.2: Pixel values as a function of inner product between look direction, �exy, and
largest eigenvector, �v1. Four different regularization factors (α = 10−5, 10−3, 10−1, 100) are
shown for minimum variance imaging, which can be compared with the conventional case
(Conv).

An example is provided here to illustrate the impact of regularization on MVDR per-

formance. Consider a pixel location at which the cross-correlation matrix, Sxy, has a single,

non-zero eigenvalue, λ1, that is equal to one and �v1 is the ideal steering vector. Recall from

(4.5) that the pixel value, PMV
xy , is maximized at a value of λ1 when �exy = �v1. Figure 4.2 il-

lustrates the pixel value, PMV
xy , as a function of the inner product between the look direction,

�exy, and �v1 for several regularization values. As the regularization is increased, tolerance

for inaccuracies in the look direction is also increased. This is apparent in Figure 4.2 by

comparing the pixel values that result when the inner product is close to, but not exactly,

one. Unfortunately, the tolerance comes at the cost of larger artifacts, which can be seen

by comparing the pixel values that result when �exy and �v1 are not in agreement and produce

an inner product much less than one. Therefore, to maximize the benefit of MVDR, it is

desirable to use as little regularization as possible while keeping α > ε. To maintain consis-

tency throughout this thesis and allow for inaccuracies in the look direction when working

with experimental data, a regularization factor of 10−1 is used for all minimum variance

imaging.
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Figure 4.3: Scattering fields for a uniform scatterer compared with 2 mm and 5 mm
through-holes generated as per Grahn [122] for the S0 mode (incident and scattered). The
scattering angle is the angular difference between the incident and scattered waves. (a)
Scattering field magnitude (normalized) as a function of angle, and (b) scattering field
phase as a function of angle.

4.3 Scattering Characteristics

With minimum variance imaging, the look direction takes on a much more significant role

than for conventional imaging. As such, further imaging improvements can be obtained by

incorporating additional information into the look direction. Specifically, the look direction

can be modified to incorporate information about the scatterer:

�exy ∼
[

ψ1
xy√
d×1xy

· · · ψnm
xy√

d×nmxy

]T

, (4.15)

where ψm
xy corresponds to the scattering coefficient of an incident wave on point (x, y) for

the mth transmitter-receiver pair. Note that as before, �exy is scaled to be a unit-norm vector.

Significant effort has been expended by many researchers to accurately describe scatter-

ing fields for a number of defects. Surface-breaking defects of various sizes [133], through-

thickness holes [134, 135], notches [136], and holes with and without symmetrical notches

[137] have been evaluated. As mentioned earlier, all through-hole scattering fields were

generated using the low frequency approximation derived by Grahn [122] for the center

frequency of the propagating signals (300 kHz for the examples presented here).

In previous images, the scattering field was assumed to be uniformly distributed (refer
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Figure 4.4: Minimum variance imaging with matched scattering field using simulated en-
velope signals. (a) Image displayed using a 20 dB scale, and (b) normalized pixel values
versus distance from damage location (ĉ = 11.78).

to (3.16)); however, the simulation actually used scattering characteristics corresponding

to a 6 mm through-hole. Figure 4.3 shows scattered amplitude and phase calculated for a

300 kHz sinusoid incident on a 2 mm through-hole, a 5 mm through-hole, and a uniform

scatterer. Note that although the scattering pattern for a through-hole is independent of

incident angle, this is not the case for an arbitrary scatterer such as a crack or notch. The

concept of a scattering matrix was introduced in [138] to describe far-field scattering from

flaws of arbitrary shape.

Figure 4.4 shows the performance improvement obtained by incorporating the appro-

priate scattering field into the look direction. Note that, unlike the other methods discussed

in this section, the use of scattering characteristics improves the peak-to-noise ratio of the

image by increasing the peak value with little impact on the noise floor. Figure 4.4 results

in a performance metric of ĉ = 11.78.

4.4 Phase Information

Another factor that can significantly improve imaging performance is the inclusion of phase

information. Imaging with envelope data, as shown in Figures 3.11, 4.1, and 4.4, discards

valuable information contained in the received signals. Two signal formats are available to
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Figure 4.5: Minimum variance imaging with matched scattering field using simulated an-
alytic signals. (a) Image displayed using a 20 dB scale, and (b) normalized pixel values
versus distance from damage location (ĉ = 13.05).

convey the phase information of the scattered field for imaging: (1) raw RF and (2) analytic

representation. Since both formats contain identical information, imaging performance is

expected to be comparable between the two. Since the analytic representation treats the

signals as complex values, making phase information about the scattered field easily acces-

sible, the analytic representation is used when phase information is incorporated throughout

this text.

Note that the use of phase information in either format may slightly change two aspects

of the imaging algorithm as it has been described: (1) dispersion compensation may be-

come necessary, depending on propagation distances and the degree of dispersion present

in the frequency range of operation, and (2) scattering fields will need to include com-

plex reflection coefficients, conveying phase information in addition to magnitude, as in

Figure 4.3.

Figure 4.5 represents the significant imaging improvements that is obtained from using

phase information. A much smaller defect spot size and a significantly lower noise floor

are visible. Clearly, the additional phase information provides for significant performance

improvement as compared to the use of envelope signals assuming that the phase of the

signal is accounted for during back-propagation. The performance metric for Figure 4.5 is
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ĉ = 13.05.

There are two fundamental reasons for the significant improvement over Figure 4.4.

First, the use of phase information improves the time resolution of the signal. As the

time resolution of the signal is increased, the spatial resolution of the image is expected

to improve as well. Second, the use of the complex signals for minimum variance imag-

ing reduces the image noise floor by reducing the likelihood that the look direction will

accidentally agree with �v1.

4.5 Instantaneous Windowing

Imaging performance can be further improved by modifying the window width used for the

integration in (3.15). It is assumed that the same time window is used for all pixel locations,

and that it is centered at a time that maximizes the signal-to-noise ratio. For example, for

the case illustrated in Figure 3.9, the 12 μs integration window is centered at 0 μs.

The length of the time window is determined to balance the need to (1) accurately es-

timate the correlation matrix and (2) minimize the impact of undesired reflections. For

received signals that contain Gaussian white noise, larger time windows provide a mech-

anism to minimize the effects of noise on the correlation matrix. In contrast, at image

locations with artifacts, the pixel value is non-zero because there are non-negligible com-

ponents of the back-propagated signals that are in agreement with the look direction. Since

non-real-time guided wave systems can reduce the level of additive Gaussian white noise

to arbitrary levels by averaging a number of waveforms, increasing the window size simply

increases the window of opportunity for undesired agreement between the look direction

and non-damage related signals. Therefore, improved performance can be achieved by

minimizing the window length.

For the case of high-SNR received signals, the correlation matrix may be accurately

generated with as little as a single vector that corresponds to a time that maximizes the

signal-to-noise ratio. Figure 4.6 depicts imaging performance as a function of window size
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Figure 4.7: Minimum variance imaging with matched scattering field using simulated an-
alytic signals and an instantaneous window. (a) Image displayed using a 20 dB scale, and
(b) normalized pixel values versus distance from damage location (ĉ = 16.63).

for the simulated case, which uses a Hamming-windowed sinusoid. For more complex

excitation signals, it is possible that larger windows may exhibit improved performance.

Note that as the window size is decreased, the correlation matrix used by MVDR be-

comes underdetermined. As shown previously, however, regularization by diagonal loading

is used to mitigate this situation.

Figure 4.7 illustrates imaging performance after reducing the window-size from the 12

μs window used previously to a single digital sample recorded at 5 MHz. The performance

metric is increased from 13.05 to 16.63.
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When instantaneous windowing is used, the summation interval in (3.15) is reduced to

a single point in time, τ. In other words,

Sxy = �sxy (τ)�sH
xy (τ) , (4.16)

where τ is a time reference that corresponds to the maximum amplitude of the transmitted

signal. For the simulation and experimental examples used throughout this text, τ = 0.

Instantaneous windowing simplifies both conventional and minimum variance imaging.

When the correlation matrix is reduced to the form of (4.16), the pixel value calculation for

conventional imaging (see (3.14)) becomes:

PDS
xy =

∣∣∣∣�sH
xy (τ)�exy

∣∣∣∣2 . (4.17)

From (4.17), the computational complexity for calculating a single pixel value is O(nm).

The computational benefits of instantaneous windowing are slightly less straightfor-

ward for minimum variance imaging. Recall that diagonal loading has already been pro-

posed for inversion of the correlation matrix. The eigendecomposition of a diagonally

loaded instantaneous correlation matrix is:

Ŝxy = �sxy (τ)�sH
xy (τ) + αλ1Im

= (1 + α)λ1�v1�v
H
1 + αλ1V�1V

�

1
H, (4.18)

where V�1 is a set of nm − 1 orthonormal vectors orthogonal to �v1. Using the structure of Ŝxy

in (4.18), the inverse of Ŝxy is:

Ŝ
−1
xy =

1
(1 + α) λ1

�v1�v
H
1 +

1
αλ1

V�1V
�

1
H. (4.19)

Substituting (4.19) into (4.9), the optimal weights that satisfy (4.4) can be expressed as:

�wxy =

�vH
1 �exy

(1+α)λ1
�v1 +

1
αλ1

V�1V�1
H�exy∣∣∣∣�vH

1 �exy

∣∣∣∣2
(1+α)λ1

+
φ

αλ1

, (4.20)

where

φ = �eH
xyV

�

1V
�

1
H�exy. (4.21)
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From (4.21), φ is the squared-norm of the projection of �exy onto the null-space of �v1.

Therefore, φ can be calculated directly from �exy and �v1 as:

φ =
∥∥∥∥(Im − �v1�v

H
1

)
�exy

∥∥∥∥2
=

∥∥∥∥�exy −
(
�vH

1�exy

)
�v1

∥∥∥∥2
. (4.22)

Substituting (4.20) into (4.10) and collecting terms yields

PMV
xy =

λ1

∣∣∣∣�vH
1�exy

∣∣∣∣2(∣∣∣∣�vH
1�exy

∣∣∣∣2 + φ 1+α
α

)2
, (4.23)

since V�1
HSxy = 0. The above formulation, along with (4.22), indicates that instantaneous

windowing allows each pixel value to be computed without the need to explicitly calcu-

late the correlation matrix, the associated eigenvalues, or a regularized matrix inversion for

each pixel. The computational complexity for a single MVDR pixel calculated as in (4.23)

is O(nm), which represents a significant improvement over the more general finite win-

dow case of O(n3
m) and is comparable to the computational requirements of conventional

imaging.

4.6 Vectorization

The method employed to implement guided wave imaging in matrix-based software pack-

ages such as MATLAB (The Mathworks, Natick, MA) [139, 140], Octave (John W. Eaton)

[141], and SciLab (The SciLab Consoritum, Cedex, France) [142], has a significant impact

on computation time because of the software package’s internal structure. It is well-known

that matrix-based software packages perform more efficiently with vectorized data [139,

140]. This section constructs the guided wave imaging algorithms discussed in the previ-

ous sections in vectorized format to aid the reader in vectorization of this specific problem.

It is important to note that throughout this section, all matrix operations are performed

element-wise. The nature of the problem does not lend itself to traditional row-column

matrix multiplications, rather the matrix structure is employed here to better adapt the
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problem to the software tool. Also, although the convention in this section is to use two-

dimensional (2-D) matrices to store pixel-specific data, the dimensionality of the problem

can be further reduced to store the 2-D matrices in a 1-D array. The current format was

chosen over the alternative for readability purposes and is not expected to have a noticeable

impact on computational requirements.

Let X and Y be matrices of x- and y-coordinates, respectively, for each pixel location:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x0 x1 · · ·
...

...
...

x0 x1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y0 · · · y0

y1 · · · y1

... · · · ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.24)

Then nm separate 2-D matrices are generated that correspond to the distance from transmit-

ter to pixel location, D̂m, and pixel location to receiver, Ďm:

D̂m =

√(
X − xt(m)

)2
+

(
Y − yt(m)

)2 (4.25)

Ďm =

√(
X − xr(m)

)2
+

(
Y − yr(m)

)2
, (4.26)

where xt(m), yt(m), xr(m), and yr(m) correspond to the x- and y-coordinates of the transmitter

and receiver for the mth transmitter-receiver pair.

The instantaneous windowing assumption allows the back-propagated signals to be ob-

tained simply by selecting a single time sample from the differenced signals:

Sm = sm

(
τ +

D̂m + Ďm

cg

)
. (4.27)

Here a 2-D matrix, Sm, is constructed in which each element of Sm corresponds to a specific

time in sm (t) defined by the argument in (4.27). Note that if a sufficiently high sampling

rate is used so that interpolation in the time domain is unnecessary, the argument in (4.27)

can be multiplied by the sampling frequency and rounded to the nearest integer to obtain

the desired sample index.

From (4.27), if the nm 2-D matrices are stacked in a third dimension, then �sxy (τ) for

each pixel value is stored along the third dimension. An identical structure is used for the

�exy and �v1 vectors.
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The 3-D matrix of �exy vectors is determined as in (3.16). To begin, the unnormalized

vectors are calculated:

Fm =
Ψm√
D̂mĎm

, (4.28)

whereΨm is a matrix of pixel-specific scattering coefficients for the mth transmitter-receiver

pair. The pixel specific norm is then obtained,

‖F‖ =
√√

nm∑
m=1

|Fm|2, (4.29)

and finally the pixel-specific vectors are normalized,

Em =
Fm

‖F‖ . (4.30)

The conventional image is generated as

PDS =

∣∣∣∣∣∣∣
nm∑

m=1

S∗mEm

∣∣∣∣∣∣∣
2

, (4.31)

where ∗ is the element-wise complex conjugate operation.

To calculate the pixel values for an MVDR image, a 2-D matrix of λ values is calcu-

lated:

Λ1 =

nm∑
m=1

|Sm|2. (4.32)

The Λ1 matrix is then used to obtain the eigenvectors:

Vm =
Sm√
Λ1

. (4.33)

For convenience, two intermediate matrices are calculated:

Θ =

nm∑
m=1

V∗mEm (4.34)

Φ =

nm∑
m=1

|Em −ΘVm|2 (4.35)

which correspond to the �vH
1�exy and φ terms, respectively for the single-pixel case in (4.23).

Finally, the MVDR pixel value is calculated using element-wise matrix operations:

PMV =
Λ1 |Θ|2∣∣∣∣|Θ|2 + (

1+α
α

)
Φ

∣∣∣∣2 . (4.36)
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Equation (4.31) and (4.36) reflect the vectorized conventional and minimum variance imag-

ing algorithms, respectively, with instantaneous windowing. Note that complete vectoriza-

tion of the minimum variance imaging algorithm is not possible without the instantaneous

windowing optimization presented in Section 4.5. Vectorization is expected to reduce the

computation time required for image generation when using matrix-oriented numerical

analysis software.

Simulation data were used to verify the computational complexity of the proposed

methods above. Guided wave images were generated using 2 to 24 transducers for five sep-

arate cases: (1) minimum variance imaging with traditional matrix inversion computed with

for-loops, (2) minimum variance imaging optimized for instantaneous windowing com-

puted with for-loops, (3) minimum variance imaging optimized for instantaneous window-

ing and computed with vectorized data, (4) conventional imaging computed with for-loops,

and (5) conventional imaging computed with vectorized data. For comparison purposes,

all images were created using instantaneous windowing, meaning that the correlation ma-

trix (if calculated) is constructed as in (4.16). MATLAB (The Mathworks, Natick, MA)

was used to generate the images using a Hewlett-Packard laptop (Hewlett-Packard Co.,

Palo Alto, CA) with an Intel Core2 Duo CPU (Intel Corp., Santa Clara, CA) operating at

2.26 GHz with 4 GB of RAM and running Windows Vista Home Premium (Microsoft

Corp., Redmond, WA). Each image was composed of 7744 pixels, corresponding to a

914 mm × 914 mm plate imaged with pixels spaced 10.4 mm apart. Images were each

generated 20 separate times and the average computation time was recorded.

Figure 4.8 depicts computation time as a function of the number of transducers. Sev-

eral features of Figure 4.8 are worth noting. First, the optimization for minimum variance

imaging presented in Section 4.5 significantly reduces the computational requirements of

minimum variance imaging (broken lines) to the point that it can be performed in a com-

parable amount of time as conventional imaging (solid lines). As mentioned earlier, matrix

inversion requires O
(
n3

m

)
operations, which is compounded by the fact that if ns transducers
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Figure 4.8: Computation time vs. number of transducers for five separate cases: (1) mini-
mum variance imaging with traditional matrix inversion computed with for-loops, (2) min-
imum variance imaging optimized for instantaneous windowing computed with for-loops,
(3) minimum variance imaging optimized for instantaneous windowing and computed with
vectorized data, (4) conventional imaging computed with for-loops, and (5) conventional
imaging computed with vectorized data.

are used for imaging, the number of pairs of transducers, nm = ns (ns − 1) /2. As a result,

the computation time for minimum variance imaging without optimization grows much

faster than any of the other cases as the number of transducers is increased. In contrast, the

computation time for minimum variance imaging optimized for instantaneous windowing

is a constant multiple of the computation time required for conventional imaging. Another

important observation is that, as expected, vectorizing the imaging algorithms further re-

duces computation time. The initial offset in computation time between images generated

with for-loops vs. vectorized data is attributed to overhead costs from setup of the for-loop

operation. As the number of transducers is increased, the difference in computation time is

expected to continue to decrease because the overhead associated with for-loop operation

becomes small compared to image computational requirements.
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4.7 Discussion

In addition to accurate defect localization, minimized artifacts and improved resolution,

there are three factors that are of interest in SHM guided wave images: graceful degra-

dation, sensitivity to the damage location, and the ability to perform defect sizing and

characterization.

The improved imaging performance demonstrated in this chapter is largely due to the

heightened sensitivity resulting from the use of MVDR and phase information. One con-

cern with increased sensitivity is the risk of algorithmic failure in the presence of noise or

modeling errors. Modeling errors can include uncompensated or inaccurate receiver phase,

scattering information, and dispersion compensation. Figure 4.2 demonstrates that as �v1

and the look direction diverge, the pixel value decays gracefully as a function of the reg-

ularization. Therefore, minimum variance imaging with phase information is expected to

exhibit graceful degradation in the presence of noise or modeling errors if appropriately

regularized.

The pixel value obtained using both minimum variance imaging and conventional imag-

ing was shown in Section 4.1 to be equal to the largest eigenvalue of the correlation matrix

when the look direction, �exy, is identical to �v1. The fact that there is a relationship between

the pixel value and largest eigenvalue implies that imaging performance is sensitive to loca-

tion. When damage is close to the sensors, the propagation distances are short and received

signals are strong, resulting in a large λ1, but when damage is far from the sensors, the

received signals are weaker, resulting in a smaller λ1. Intuitively, normalizing the covari-

ance matrices to have unit norm would correct for this, making the imaging algorithm less

sensitive to pixel location. Alternatively, the received signals can be adjusted in amplitude

as a function of time or distance to compensate for geometric spreading. In actuality, how-

ever, normalization of covariance matrices and time or distance amplitude compensation

introduces artifacts because they effectively amplify pixel values that originally had no,

or very little, signal present. Without normalization, pixels located further away from the
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array (in particular, outside the bounding polygon) do have smaller amplitudes. However,

the reduced amplitude has far less of an adverse impact than the artifacts introduced by

covariance normalization or signal amplitude compensation.

Finally, defect characterization, including sizing, is a major goal of imaging with SHM

and NDE systems. It is desirable for the image to reflect the relative magnitudes of the

defects, meaning that a larger damage site should have a larger pixel value. For the simple

case of multiple uniform scatterers of varying sizes, minimum variance imaging can pro-

duce such relative pixel values if compensation is made for geometric propagation loss. As

mentioned in the previous paragraph, however, this comes at the expense of introducing ar-

tifacts by amplifying noise in the received signals. In realistic environments, damage sites

of different sizes will have different scattering fields. As such, the sensitivity to scattering

fields provides an alternative mechanism to characterize both the size and type of damage,

which is discussed in Chapter VII.

4.8 Experimental Results

The techniques described throughout this chapter for reducing imaging artifacts have been

applied to the experimental data described in Chapter III. The experimental data was ob-

tained at 22.2◦C and OBS was used to find the optimal baseline. BSS was then used to

match the test data to the baseline signals to minimize the baseline subtraction residual. Ex-

pected scattering characteristics for imaging were generated using the technique proposed

by Grahn [122] for incident and scattered S0 waves at 300 kHz, which is the dominant

mode here.

Figure 4.9 and Figure 4.10 illustrate imaging performance with experimental data us-

ing instantaneous windowing and the envelope of the analytic signal for conventional and

minimum variance imaging, respectively. The imaging performance represents a stark im-

provement over Figure 3.11. The improvement in Figure 4.9 over Figure 3.11 is largely

due to the instantaneous windowing, although the use of appropriate scattering behavior
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Figure 4.9: Conventional imaging with experimental data of a 5 mm through-hole. Imaging
was performed with the envelope of time domain signals, an instantaneous window, and
the 5 mm scattering field generated as per Grahn [122]. (a) Image displayed using a 20 dB
scale, and (b) normalized pixel values versus distance from damage location (ĉ = 3.31).
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Figure 4.10: Minimum Variance imaging with experimental data of a 5 mm through-hole.
Imaging was performed with the envelope of time domain signals, an instantaneous win-
dow, and the 5 mm scattering field generated as per Grahn [122]. (a) Image displayed
using a 20 dB scale, and (b) normalized pixel values versus distance from damage location
(ĉ = 7.86).

also helps. In Figure 4.9 the damage is clearly visible at the damage location, however

there are significant imaging artifacts that cannot be distinguished from additional damage.

Figure 4.10 demonstrates significant improvement over Figure 4.9 due to the use of MVDR

in the imaging algorithm. From Figure 4.10, the damage can be clearly localized with the

largest artifact less than half of the amplitude of the pixel value at the damage location.
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Figure 4.11: Conventional imaging with experimental data of a 5 mm through-hole. Imag-
ing was performed with the analytic representation of the time domain signals, an instan-
taneous window, and the 5 mm scattering field generated as per Grahn [122]. (a) Image
displayed using a 20 dB scale, and (b) normalized pixel values versus distance from dam-
age location (ĉ = 4.85).
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ĉ=5.21

(b)

Figure 4.12: Minimum Variance imaging with experimental data of a 5 mm through-hole.
Imaging was performed with the analytic representation of the time domain signals, an
instantaneous window, and the 5 mm scattering field generated as per Grahn [122]. (a)
Image displayed using a 20 dB scale, and (b) normalized pixel values versus distance from
damage location (ĉ = 5.21).

In contrast to Figure 4.9 and Figure 4.10, which use the envelope of the analytic repre-

sentation of the signals, Figure 4.11 and Figure 4.12 illustrate imaging performance with

the analytic signals, themselves for conventional and minimum variance imaging, respec-

tively. These two figures represent very poor imaging performance, with the number and
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magnitude of imaging artifacts exceeding that of the actual defect location many times over.

This degradation in performance is due to the effects of dispersion, in that the phase of the

signal is changing as the wave propagates through the plate. This change in phase causes

the back-propagated signals at the damage location to disagree with the steering vector,

which reduces the amplitude of the pixel at the defect location to the point that it cannot be

discerned from noise.

One final point must be made with respect to the performance metric. Contrary to what

one would expect based on a visual inspection of Figures 4.9, 4.11 and 4.12, the perfor-

mance metric values for these three figures is increasing (ĉ = 3.31, ĉ = 4.82, and ĉ = 5.21,

respectively). The performance metric improvement is associated with the non-artifact

pixel values, which decrease with the use of the analytic signal (Figures 4.11 and 4.12)

over the envelope (Figure 4.9) and again through the use of minimum variance imaging

(Figure 4.12) over conventional imaging (Figure 4.11). Notice that the minima in Fig-

ure 4.9b are all on the order of 0.05, whereas the minima in Figure 4.11b and Figure 4.12b

are much smaller. Since the performance metric is based on a linear fit in the logarithmic

domain using all of the pixel values, the lower non-artifact pixels are producing the overall

increase in performance.

4.9 Summary

This chapter has identified four techniques for reducing artifacts typically observed in

guided wave imaging. The use of minimum variance imaging was first demonstrated to

provide significant improvements over conventional imaging, both using envelope signals.

After that, minimum variance images were further improved by incorporating scattering

field information into the look direction. The inherent ability of the MVDR algorithm to

suppress imaging artifacts was then shown to further enhance images when the analytic

representation of the received signals is used, which includes phase information. Finally,

for high SNR environments, the use of instantaneous windowing was shown to reduce the
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the presence and amplitude of imaging artifacts.

In addition to imaging improvements, the computational demands for minimum vari-

ance imaging were shown to be comparable to those of conventional imaging when in-

stantaneous windowing is used. Instantaneous windowing also allows both conventional

imaging and minimum variance imaging to be vectorized, resulting in significant improve-

ments in computation time when computed with vector-based software packages, such as

MATLAB (The Mathworks, Natick, MA).

The primary contributions of the work presented here includes the application of the

MVDR algorithm to in situ guided wave imaging applications with spatially distributed ar-

rays, a quantification of the improvements achieved when phase and scattering information

are used in conjunction with MVDR, and an identification of the importance of minimizing

the window size when operating in a high SNR environment. Additionally, the compu-

tational improvements that are obtained by (1) using instantaneous windowing, and (2)

tailoring the imaging problem for matrix-based software packages have been identified and

quantified. The reduction in computational demands obtained from instantaneous window-

ing optimization enables the use of minimum variance imaging, with its associated benefits

in imaging performance, at computational costs comparable to conventional imaging. For

in situ guided wave imaging systems with spatially distributed arrays, which must balance

system complexity and cost with imaging performance, the improved ability to detect and

localize damage has clear significance. The methods illustrated here could also be readily

applied to conventional compact bulk and guided wave arrays operating in the near field.

As expected, significant improvement was shown with experimental data when using

minimum variance imaging vs conventional imaging with the envelope of the differenced

signals. However, when minimum variance imaging was performed with the analytic rep-

resentation of the differenced signals, both conventional and minimum variance imaging

exhibited a visible performance degradation (despite an increase in the quantitative per-

formance metric). The marked increase in imaging artifacts was attributed to the effects of
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dispersion, which are masked when using the envelope of the signal. In order to address the

effects of dispersion, the dispersion relations must first be estimated and then compensated.

As such, Chapter V presents the MBPE algorithm for estimating propagation parameters,

such as dispersion, with in situ sensors and Chapter VI describes two methods for incorpo-

rating these estimates into the guided wave imaging algorithm to further improve imaging

performance.
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CHAPTER V

MODEL-BASED PARAMETER ESTIMATION (MBPE)

The model-based parameter estimation (MBPE) algorithm presented in this chapter pro-

vides adaptive estimates of propagation parameters, such as dispersion, transmitter and

receiver transfer functions, propagation distances, and propagation loss. These parameters

are important to guided wave imaging because they directly affect the amplitude and phase

of the propagating waves and if left uncompensated, can result in the degraded imaging per-

formance visible in Figures 4.11 and 4.12. Although these parameters are often assumed

a priori, errors in these estimates can impose an upper limit on a system’s performance,

and estimates obtained in situ at the time of test are expected to be much more accurate.

As discussed in Chapter II, several methods for dispersion estimation are available; how-

ever, these methods are not applicable to distributed arrays for a variety of reasons. The

MBPE algorithm presented here is not only capable of estimating dispersion relations from

a distributed array in situ at the time of test, but simultaneously provides estimates of the

transmitter and receiver transfer functions, propagation distances, and propagation loss,

which are often assumed a priori. Large portions of the research discussed in this chapter

have been reported in Hall and Michaels [143], which represents a generalization of the

work reported in [144, 145, 146].

It should be pointed out that wave propagation is fundamental to a wider range of fields

and applications than the specific guided wave imaging problem considered here, and many

associated systems employing electromagnetic, acoustic or elastic waves require accurate

knowledge of the operating environment to function properly. Like the case considered

here, the performance of any of these systems is understandably linked to the accuracy

of assumed propagation models and associated parameters. Since the MBPE algorithm
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can be tailored to application-specific model assumptions, including cases with multiple

transmitter and receiver transfer functions, the approach discussed in this chapter has the

potential to be applied to applications outside of the distributed array scenario considered

here.

Estimates from the MBPE algorithm are obtained through four basic steps (see Ta-

ble 5.1). The propagation model assumptions are first defined and a system of linear equa-

tions is established using the measured, received signals. The adaptively estimated propa-

gation distances are then obtained using the measured distances, the received signals, and

the assumed propagation model. From this point, two solutions are obtained that combine

to produce the final set of parameter estimates: (1) the underdetermined linear system of

equations is solved through the use of a pseudoinverse operation, and (2) a nonlinear search

is performed to obtain the appropriate null-space coefficients to augment the linear solu-

tion. The nonlinear search is necessary to enforce some additional constraints that cannot

be imposed through the linear system of equations, specifically the integer nature of some

of the estimated parameters.

This chapter is organized as follows, first the propagation model and notation are de-

fined in the Problem Setup section. An analysis of the noise is then provided to demon-

strate that if the input noise is white Gaussian noise then the log-magnitude and phase

noise distributions are effectively zero mean; as a result, an estimate of the noise vari-

ance is established, which is useful during the nonlinear search portion of the algorithm.

Section 5.3 discusses adaptive propagation distance estimation, used to fit the measured

propagation distances to the propagation model and measured data. The linear solution is

obtained in Section 5.4, with a discussion about the significance of the null-space, and Sec-

tion 5.5 presents the nonlinear search that provides the necessary null-space coefficients.

The MBPE algorithm is then summarized, experimental results are presented, and a brief

summary concludes the chapter.
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5.1 Problem Setup

A propagating wave can be modeled in the frequency domain as:

M (ω) = T (ω) R (ω) G (ω) , (5.1)

where M (ω) is the received signal; T (ω) is the transmitter transfer function, which incor-

porates all transmitter-specific transfer functions; R (ω) represents a similar combination of

all receiver-specific transfer functions; and finally, G (ω) represents a distance-dependent

transfer function that incorporates both propagation loss and dispersion. G (ω) can be mod-

eled as

G (ω) =

(
d
α

)−p(ω)

e− jk(ω)d, (5.2)

where d is the propagation distance, p (ω) is referred to as propagation loss, k (ω) is a

frequency-dependent wavenumber, and j is equal to
√−1. The form of (5.2) is motivated

by the well-known far-field behavior for both spherical and cylindrical waves [147], where

dispersion is accounted for by the complex exponential term, and the geometric spreading

loss, represented as (d/α)−p(ω), is permitted to vary with frequency to accommodate pos-

sible frequency-dependent behavior. The α variable embedded in the geometric spreading

loss term accounts for the fact that the inverse distance law only defines proportional re-

lationships (nominally d−1/2 or d−1, depending on the application). Note that attenuation

from a lossy medium can be handled by incorporating an exponential decay term, such as

e−a(ω)d, into (5.2) either in lieu of or in addition to the geometric spreading loss term. Since

experimental validation is performed with guided waves, in which geometric spreading loss

dominates attenuation, the algorithm is presented with geometric spreading loss.

The overarching goal of model-based parameter estimation is to obtain data-driven es-

timates of T (ω), R (ω), d, p (ω), and k (ω) by leveraging the inherent constraints of the

assumed model in (5.1) and (5.2). The general approach to address this nonlinear problem
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is to convert it to a linear problem through the logarithm function:

ln (M (ω)) = ln (T (ω)) + ln (R (ω)) − p (ω) ln

(
d
α

)
− jk (ω) d + j2πb. (5.3)

When taking the logarithm of a complex number, the imaginary part of the result is con-

strained to be bounded by ±π. Therefore, an integer multiple of 2π must be included in the

phase, which necessitates the j2πb term in (5.3) where b is an integer. Note that the the

real and imaginary parts of (5.3) can be separated into two independent equations:

ln (|M (ω)|) = ln (|T (ω)|) + ln (|R (ω)|) − p (ω) ln

(
d
α

)
, (5.4a)

�M (ω) = �T (ω) + �R (ω) − k (ω) d + 2πb. (5.4b)

From a practical standpoint, the received signals are assumed to be digitally sampled in

the time domain, and frequency domain measurements are obtained via a fast Fourier trans-

form (FFT). As such, the frequency domain measurements correspond to measurements at

discrete frequencies. If these discrete frequencies are spaced sufficiently close to one an-

other, the received signal phase response can be unwrapped by adding or subtracting integer

multiples of 2π to eliminate phase discontinuities. To ensure the phase unwrapping opera-

tion is performed accurately, the frequency domain measurements must span a continuous

spectral band with positive SNR within each frequency bin. By unwrapping the spectrum,

the b in (5.4b) becomes consistent across the entire frequency spectrum, which provides

an additional model constraint that can be leveraged during parameter estimation. A lower

bound can be established for the number of time domain samples, nn, required to produce

sufficiently close sampling in ω. The bound is derived in Appendix A and presented here

for succinctness:

nn >
2πFsdmax

cmin

[
π − 2 sin−1

(
1

Qmin

)] , (5.5)

where Fs is the sampling frequency, dmax is the maximum distance propagated for any

received signal, cmin is the minimum group velocity at any frequency, and Qmin is the mini-

mum signal-to-noise ratio (SNR) for any frequency. Note that the number of time domain
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samples can be increased to satisfy (5.5) by padding received signals with zeros and does

not translate to any system operational requirements.

To estimate the large number of unknowns in this problem, multiple M (ω) measure-

ments are necessary. Therefore, multiple signals are recorded over different propagation

distances. The equations described in (5.4a) and (5.4b) can be converted into matrix format

to relate information from each of the received signals to each of the parameters of interest:

MR =QTTR +QRRR − �d��pT
, (5.6a)

MI =QTTI +QRRI − �d �k T
+ 2π�b �1

T

w . (5.6b)

Here the “R” and “I” matrix subscripts denote the real and imaginary components of the

logarithm of the data. The MR and MI matrices are [nm × nw] matrices containing all

measured information, where nm is the number of received signals and nw is the number

of frequencies. The TR and RR matrices correspond to the nt unknown ln (|T (ω)|) and nr

unknown ln (|R (ω)|) estimates and the TI and RI matrices similarly correspond to the nt

and nr unknown �T (ω) and �R (ω) variables, respectively. The QT and QR matrices relate

each row of the MR and MI matrices to the appropriate row of TR, TI, RR, and RI. The

elements of the QT and QR matrices are assumed to be limited to the integers “1” and

“0”, which is the case for all envisioned scenarios. This construction allows the model

to account for either common or multiple transmitter and receiver transfer functions. The

�p and �k vectors are [nw × 1] vectors that contain the propagation loss and wavenumber

estimates, respectively. The �b vector contains each of the nm integers associated with the

unknown multiples of 2π. The �1w vector corresponds to a [nw × 1] vector of all-ones.

Finally, the “�” superscript discriminates between the [nm × 1] vector, �d, which contains

the propagation distances in vector format, and the [nm × 1] vector, �d
�
, corresponding to

the element-wise logarithm of the propagation distances scaled by α:

�d
�
= ln

(
1
α
�d
)
. (5.7)
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It is important to note that α is an integral part of the assumed propagation model and will,

therefore, affect the resulting estimates of TR, RR, and �p. Throughout this text, the α vari-

able is selected to be the mean measured distance. Although this choice of α is somewhat

arbitrary, it has been found to produce reasonable estimates for all three parameters.

Let PΔ be a [nw × nw] projection matrix (PΔPΔ = PΔ) corresponding to the null space

of the all-ones row-vector, meaning that �1
T

w PΔ = 0. Then the TI and RI matrices of (5.6b)

can each be described in further detail as the addition of two separate components, one that

is frequency-dependent, TΔ and RΔ, and another that is frequency-independent, �τ and �ρ:

TI = TΔ + �τ �1
T

w (5.8a)

RI = RΔ + �ρ �1
T

w (5.8b)

where TΔ = TIPΔ and RΔ = RIPΔ. The wavenumber vector can be similarly decomposed

into:

�k = �kΔ + κ�1w (5.9)

with �k
T

Δ =
�k

T
PΔ. Note that the decomposition of TI, RI, and �k into frequency-dependent

and frequency-independent components is performed here for mathematical convenience

and does not necessarily correspond to any physical properties or behavior.

To maximize the flexibility of the proposed model, two additional matrices, Qτ and Qρ ,

are introduced to relate the frequency-independent values in �τ and �ρ to each measurement

in the MR and MI matrices. Under most circumstances, Qτ = QT and Qρ = QR. However,

there may be certain scenarios where the transmitter and receiver transfer functions are

assumed to be identical, with the exception of some constant phase offset. In those cases,

the Qτ and Qρ matrices may differ from QT and QR. Incorporating (5.8) and (5.9) with

(5.6b) yields:

MI = QTTΔ +Qτ�τ �1
T

w +QRRΔ +Qρ �ρ �1
T

w − �d �k
T

Δ − κ�d �1
T

w + 2π�b �1
T

w . (5.10)

Since, by definition, TΔ and RΔ reside in the null space of the all-ones row-vector,
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another set of equations can be obtained from (5.10) by right-multiplying MI with PΔ:

MIPΔ = QTTΔ +QRRΔ − �d �kT

Δ . (5.11)

The matrices in (5.6a), (5.10) and (5.11) can be consolidated into a single set of linear

equations:

AZ =M, (5.12)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
) (

2
) (

3
) (

4
) (

5
) (

6
) (

7
) (

8
) (

9
) (

10
)

QT 0 0 QR 0 0 −�d� �0m
�0m 0

0 QT Qτ 0 QR Qρ
�0m −�d −�d 2πIs

0 QT 0 0 QR 0 �0m −�d �0m 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.13a)

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
)

TR(
2
)

TΔ(
3
)

�τ�1
T

w(
4
)

RR(
5
)

RΔ(
6
)

�ρ�1
T

w(
7
)

�p T

(
8
)

�k
T

Δ(
9
)

κ�1
T

w(
10

)
�b�1

T

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
MR

MI

MIPΔ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.13b)

Equation (5.12) represents the generalized propagation model in the format of a nonho-

mogeneous matrix equation. The matrix M contains all frequency domain measurements,

A represents the assumed propagation model, and Z consists of the unknown variables.

Note that (5.13a) and (5.13b) represent a general structure for the matrices of (5.12) under
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the current model assumptions. Two specific examples for these matrices are provided in

Section 5.7.2 and Section 5.7.3. Alternative model assumptions can be accommodated by

updating the Z and A matrices accordingly. Also, it is important to point out that A does

not contain all model constraints. Specifically, the elements of �b are not constrained to be

integers.

Throughout this chapter, references are frequently made to the four vector subspaces

defined by the fundamental theorem of linear algebra [148]: (1) the column space, range,

or image, denoted by a “�” superscript, (2) the left null space or cokernel, denoted by a “�”

superscript, (3) the null space or kernel, denoted by a “�” superscript, and (4) the row space

or coimage, denoted by a “=”. These four vector subspaces are used in reference to two

matrices in particular, which have a profound impact on the algorithm’s ability to estimate

parameters:

QTR =

[
QT QR

]
, (5.14a)

Qτρ =

[
Qτ Qρ

]
. (5.14b)

Here both QTR and Qτρ are [nm × (nt + nr)] matrices. Applying this vector space notation,

Q �TR is a matrix of orthonormal column vectors that span the column space of QTR. The

size of Q �TR is defined as [nm × n�TR]. Similar definitions can be made for the other three

vector subspaces as well as for the Qτρ matrix. Building upon the above notation, projec-

tion matrices onto these vector subspaces are denoted as P matrices with the appropriate

superscripts and subscripts. So, P �TR is a [nm × nm] projection matrix that projects onto the

vector subspace spanned by Q �TR (i.e. P �TR = Q�TR(Q �TR)T). Note that since (Q �TR)TQ �TR = 0,

P �TRQT = 0 and P �TRQR = 0. Finally, note that the rank-nullity theorem relates the dimen-

sionality of the column space, n�TR, and dimensionality of the null space, n�TR:

n�TR + n�TR = nt + nr. (5.15)

One last observation about the structure of A is in regards to the rank of the matrix.

The rank can be determined by examining linearly independent subsets of the columns of
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A. Assuming that the number of unknown transmitter and receiver transfer functions is

smaller than the number of received signals (nt + nr < nm), then QTR and Qτρ are not full

rank. As such, �d and �d
�

are assumed to be linearly independent of QTR and Qτρ. Therefore,

the columns
(
1
)
,
(
4
)
, and

(
7
)

from (5.13a) span a column space with n�TR + 1 dimensions.

Similarly, the columns
(
2
)
,
(
5
)
, and

(
8
)

also span a column space of n�TR+1 dimensions that

is orthogonal to the span of columns
(
1
)
,
(
4
)
, and

(
7
)
. Finally, the columns

(
3
)
,
(
6
)
,
(
9
)
, and(

10
)
, which are linearly independent of the two previous groups, span an nm-dimensional

column space since column
(
10

)
contains an [nm × nm] identity matrix. Therefore, the rank

of A is:

rank (A) = nm + 2n�TR + 2. (5.16)

5.2 Noise Analysis

One issue when working with any parameter estimation algorithm is the impact of noise. If

complex Gaussian white noise is assumed present in the measured frequency spectrum, two

separate noise distributions are present in the elements of MI and MR, that of phase noise

and log-magnitude noise, respectively. This section characterizes the noise distributions by

determining their probability distribution functions (PDFs), mean, and variance.

Consider the case of a single noisy measurement, M, that represents a single complex

value, M̂, that has been corrupted with an additive, circularly symmetric (a.k.a. proper)

complex Gaussian random variable, N, with zero mean and variance σ2
N:

M = M̂ + N. (5.17)

The above equation can be described as a single, circularly symmetric complex Gaussian

random variable with complex mean, μ = M̂. Recall that the PDF for a complex Gaussian

random variable in a Cartesian coordinate system is:

p (x, y) =
1

2πσxσy
e
− 1

2

(
(x−μx)2

σ2
x
+

(y−μy)2

σ2
y

)
. (5.18)
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Since the noise is circularly symmetric, σ2
R = σ

2
I
=

σ2
N

2 . Without any loss of generality, M̂

can be taken to be a positive, real values, which means that (μR, μI) = (
∣∣∣M̂∣∣∣ , 0). Substituting

these values into (5.18) and converting to polar coordinates, the PDF of M is:

pM (r, θ) = p (r cos θ, r sin θ)

=
r

πσ2
N

e
2r|M̂|
σ2

N
cos θ− r2+|M̂|2

σ2
N , (5.19)

where pM(r, θ) is the PDF of M in terms of magnitude, r, and phase, θ, assuming that

0 ≤ θ < 2π and 0 ≤ r. From (5.19), the log-magnitude and phase noise distributions can be

characterized.

5.2.1 Log-Magnitude Noise Distribution

Before the log-magnitude distribution can be obtained, the magnitude distribution must be

characterized. The PDF of |M| in terms of r, p|M|(r), can be found by integrating (5.19)

over all θ:

p|M| (r) =
∫ 2π

0
pM (r, θ) dθ

=
2r

σ2
N

e
− r2+|M̂|2

σ2
N I0

⎛⎜⎜⎜⎜⎜⎝2r
∣∣∣M̂∣∣∣
σ2

N

⎞⎟⎟⎟⎟⎟⎠ , (5.20)

where I0 (z) is a modified Bessel function of the first kind,

I0 (z) =
1
2π

∫ 2π

0
ez cos θdθ. (5.21)

Equation (5.20) is then used to define the additive noise associated with |M|,

|M| = ∣∣∣M̂∣∣∣ + N|·|, (5.22)

where N|·| is a random variable with PDF derived from (5.20):

p|·|(ν) = p|M|
(
ν +

∣∣∣M̂∣∣∣) . (5.23)
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To find the PDF of the log-magnitude noise, note that:

ln (|M|) = ln
(∣∣∣M̂∣∣∣ + N|·|

)
= ln

(∣∣∣M̂∣∣∣) + ln

⎛⎜⎜⎜⎜⎜⎝1 + N|·|∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠

= ln
(∣∣∣M̂∣∣∣) + Nln|·|, (5.24)

where

Nln|·| = ln

⎛⎜⎜⎜⎜⎜⎝1 + N|·|∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠ . (5.25)

The above equation defines the log-magnitude noise, Nln|·|, in terms of the magnitude noise,

N|·|. Therefore, the PDF of the log-magnitude noise, pln|·|(ν), can be defined in terms of the

magnitude PDF, p|·|(ν):

pln|·|(ν) = p|·|(
∣∣∣M̂∣∣∣ (eν − 1)). (5.26)

By combining (5.26), (5.23), and (5.20), the PDF of the log-magnitude noise distribution

can be obtained:

pln|·| (ν) = p|M|
(∣∣∣M̂∣∣∣ (eν − 1) +

∣∣∣M̂∣∣∣)
= p|M|

(∣∣∣M̂∣∣∣ eν)
= 2Q2e2ν−Q2(e2ν+1)I0

(
2Q2eν

)
, (5.27)

where Q =
∣∣∣M̂∣∣∣ /σN is referred to as the complex SNR.

Equation (5.27) indicates that the log-magnitude noise distribution, and therefore the

resulting mean and variance, is dependent on the complex SNR. Figure 5.1 shows the log-

magnitude noise variance vs. complex SNR. The same data are presented in Figure 5.2

in the form of the log-magnitude noise standard deviation, which is plotted alongside the

log-magnitude mean for direct comparison. Note that although the log-magnitude noise

distribution has a non-zero mean, the mean is very small relative to the standard deviation.

As a result, it is reasonable to treat this distribution as having zero mean and there is little

benefit to bias-compensation.
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Figure 5.1: Log-magnitude and phase noise variance as a function of complex SNR. Note
that the two analytic solutions closely match the approximation for SNR greater than 10 dB.
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Figure 5.2: Mean and standard deviation of log-magnitude noise vs. complex SNR. Al-
though log-magnitude noise has a non-zero mean, the mean is very small compared to the
standard deviation.

5.2.2 Phase Noise Distribution

The probability distribution function of the phase noise, p� (θ), can be found by integrating

(5.19) over 0 ≤ r < ∞, yielding the following result:

p� (θ) =
∫ ∞

0
pM (r, θ) dr

=
1
2π

e−Q2 (
1 + Q cos (θ)

√
πeQ2 cos2(θ) (1 + erf (Q cos (θ)))

)
, (5.28)
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where

erf (x) =
2√
π

∫ x

0
e−t2dt. (5.29)

Similar to the case for the log-magnitude noise distribution, the phase noise distribu-

tion is a function of the complex SNR. Unlike the log-magnitude noise distribution, how-

ever, the phase noise distribution is zero mean. Figure 5.1 shows the phase-noise variance

as a function of complex SNR. Note that as complex SNR increases, the phase and log-

magnitude noise variances converge.

5.2.3 Noise Variance Approximation

A linear approximation of the phase and log-magnitude noise variances as a function of

complex SNR can be obtained by considering the case of a high SNR signal. Let NR and

NI be the orthogonal components of the circularly symmetric complex noise variable, N,

in the directions of the real and imaginary axes, respectively. As mentioned earlier, NR and

NI each have zero mean and variance σ2
R = σ

2
I
=

σ2
N

2 . For a high SNR signal, the real and

imaginary components of the circularly symmetric noise effectively impact only magnitude

and phase, respectively. As such, the phase noise variance is approximately:

σ2
� ≈ E

⎡⎢⎢⎢⎢⎢⎣arctan2

⎛⎜⎜⎜⎜⎜⎝ NI∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ ≈ 1

2Q2
, (5.30)

since NI/
∣∣∣M̂∣∣∣ << 1 and the small angle approximation allows the arctan function to be

approximated by its argument.

To obtain the log-magnitude approximation, note that log-magnitude noise is related to

the magnitude noise in (5.25). As a result, the log-magnitude noise variance is effectively:

σ2
ln|·| ≈ E

⎡⎢⎢⎢⎢⎢⎣ln2

⎛⎜⎜⎜⎜⎜⎝1 + NR∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ . (5.31)

For this high-SNR case, the logarithmic relationship can be simplified using the Taylor
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series expansion of a natural logarithm:

ln

⎛⎜⎜⎜⎜⎜⎝1 + NR∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠ = NR∣∣∣M̂∣∣∣ − 1

2

⎛⎜⎜⎜⎜⎜⎝ NR∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠

2

+
1
3

⎛⎜⎜⎜⎜⎜⎝ NR∣∣∣M̂∣∣∣
⎞⎟⎟⎟⎟⎟⎠

3

− · · ·

≈ NR∣∣∣M̂∣∣∣ , (5.32)

since NR <<
∣∣∣M̂∣∣∣. Therefore, the log-magnitude noise variance can be approximated as

σ2
ln|·| ≈ 1

2Q2 . This result is identical to the approximation for phase noise.

The phase and log-magnitude noise variance approximation is shown in Figure 5.1

as a thick line for comparison with the analytic solutions. The analytic solutions clearly

converge with the simple approximation and thus the approximation derived here can be

considered valid for complex SNRs as low as 10 dB.

5.2.4 Noise Model

The above analysis provides a mechanism to model the system noise in the logarithmic

domain. Let the measurements contained in the measurement matrix, M, be modeled as a

matrix of true values, M̂, plus a matrix of additive noise, N, similar to (5.17):

M = M̂ + N. (5.33)

The frequency domain noise for each received signal is assumed to be circularly-symmetric

i.i.d. Gaussian noise with variance σ2
N. Therefore, each column of N is independent of the

other columns and has the structure:

�Ni =

[
�N

T

Ri
�N

T

Ii
�N

T

Ii

]T

, (5.34)

where �Ni is the ith column of N, and the �NRi and �NIi vectors correspond to the noise present

in the ith column of MR and MI, respectively. Note that while the �NRi and �NIi vectors are

independent of one another, the two �NIi vectors in the above equation, although not exactly

the same as written, are nearly identical since the third set of linear equations corresponds

to MIPΔ, which effectively subtracts the row mean from each row and has a negligible
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impact on the noise. Since the phase noise and log-magnitude noise can be treated as zero

mean, the distribution for every element of N is assumed to have zero mean, E [N] = 0.

Further, by using the approximation from the previous section, σ2
ln|·| ≈ σ2

� ≈ 1
2Q2 , the noise

variance for each column can be approximated as:

σ2
i = E

[
�N

T

i
�Ni

]
= E

[
�N

T

Ri
�NRi

]
+ 2E

[
�N

T

Ii
�NIi

]
=

3
2

∑
j

1

Q2
i j

, (5.35)

where Qi j is the complex SNR for the ith column (FFT frequency bin) and jth received

signal.

5.3 Distance Vector Estimation

To completely define A in (5.13a), the distance vector �d must be known. Although it is

possible to measure the propagation distances, these measurements are subject to measure-

ment errors and may change slightly with variations in the propagation environment (e.g.

thermal expansion). As such, the measured distance vector, �dm, is constrained to fit the

data.

To begin, the nm-dimensional vector space that �d resides in can be divided into two

mutually exclusive subspaces based on the QTR matrix, Q �TR and Q �TR. Note that when

the projection matrix, P �TR, is multiplied with the MIPΔ product described in (5.11), the

distance vector term can be isolated:

P�TRMIPΔ = −P �TR
�d �k

T

Δ . (5.36)

Inspection of the right-hand-side of (5.36) reveals that every column of P �TRMIPΔ is a

scaled version of P �TR
�d. Since �k

T

Δ is unknown, �d cannot be obtained directly. It is possible

however, to use (5.36) to determine the direction of P �TR
�d. Let �v �TR be the unit-norm vector
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corresponding to the direction of P �TR
�d. Then �v �TR must satisfy:

�v �TR = arg max
�v

�vTM�

TR

(
M�

TR

)T �v, (5.37)

where M�

TR is defined as

M�

TR = P �TRMIPΔ. (5.38)

Note that �v �TR is, by definition, the eigenvector that corresponds to the largest eigenvalue of

M�

TR

(
M�

TR

)T. Also, although not performed for the examples presented in this text, more

accurate estimates of �v �TR may be possible by normalizing or weighting the columns of M�

TR

prior to performing the eigendecomposition.

The distance vector, �d, can now be defined in terms of �v �TR, which is the unit-norm

projection of �d onto Q �TR, and some linear combination of the columns of Q �

TR:

�d = d
�
�v�TR +Q �TR

�d
�
, (5.39)

where the d
�

and �d
�
variables are scaling coefficients. The scaling coefficients d

�
and �d

�
are

obtained by projecting the a priori measured distances, �dm, onto �v �TR and Q �TR:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d�

�d
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[
�v�TR Q �TR

]T
�dm. (5.40)

For completeness, it should be noted that a similar derivation can be performed to find

an equivalent �v �TR for the logarithm of the scaled distance vector, �d
�
. The exclusive use of

phase-response data over log-magnitude data was chosen for convenience. Alternatively,

both the magnitude and phase information could be used to make a combined estimate.

However, since the �d and �d
�

vectors are related by an exponential function, combining

�v �TR estimates requires a nonlinear search. Since satisfactory results are obtained with only

phase information, the additional complexity associated with combining distance vector es-

timates from both magnitude and phase information is omitted in the interest of simplicity.
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5.4 Linear Solution and Model Null-Space

The general solution to (5.12) can be obtained by applying the Moore-Penrose pseudoin-

verse [149], denoted by “†”, and accounting for the null-space of the A matrix:

Z = A†M + A�C�A, (5.41)

where A† =
(
ATA

)−1
AT, the columns of A� form a basis for the null space of A, and C�A

is a matrix of unknown coefficients. In Section 5.2 it was shown that the phase noise has

zero mean and the log-magnitude noise can be safely approximated as zero mean. As such,

the pseudoinverse operation used in (5.41) provides the least-squares approximation to the

values in Z. Note that obtaining the first term of (5.41) is not computationally demanding

since the A† matrix is not frequency-dependent and need only be calculated once.

For the problem formulation considered here, the null space of A can be characterized

by inspection of (5.13a). To begin, decompose the Q�TR matrix into two sub-matrices:

Q�TR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q�(T)R

Q�T(R)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (5.42)

where Q�(T)R is a [nt×n�TR] sub-matrix and Q�T(R) is a [nr ×n�TR] sub-matrix. Assuming that �d

and �d
�

are linearly independent of QT and QR, then the null space of A is spanned by five

81



sets of vectors, namely:

A� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�R A�I A�τ A�ρ �a�κ(
1
)

Q�(T)R 0 0 0 �0t(
2
)

0 Q�(T)R 0 0 �0t(
3
)

0 0 It 0 �0t(
4
)

Q�T(R) 0 0 0 �0r(
5
)

0 Q�T(R) 0 0 �0r(
6
)

0 0 0 Ir
�0r(

7
)

0 0 0 0 0(
8
)

0 0 0 0 0(
9
)

0 0 0 0 1(
10

)
0 0 − 1

2πQτ − 1
2πQρ

1
2π
�d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.43)

The fact that the columns of A� reside in the null space of A can be verified by in-

spection of (5.13a) and (5.43). To verify that the entire null space of A is spanned by the

columns of A�, first note that each column of A� is independent of all other columns, and

then consider that there are 2n�TR + nt + nr + 1 columns. Since the dimensions of A are

[3nm × (3(nt + nr + 1) + nm)], the rank-nullity theorem states that:

rank (A) + nullity (A) = 3(nt + nr + 1) + nm, (5.44)

Substituting (5.15) and (5.16) into the above equation and solving for nullity (A) yields:

nullity (A) = 2n�TR + nt + nr + 1. (5.45)

Since there are 2n�TR + nt + nr + 1 columns in A� that are linearly independent and reside in

the null space of A, these columns span the null space of A.

The first two sets of vectors, A�R and A�I, account for potential ambiguities in the mag-

nitude and phase relationship between the transmitter and receiver transfer functions. Con-

sider a simple example: regardless of the actual phase estimates of the transmitter and
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receiver transfer functions, no net change would result in the phase estimate of model-

generated signals if all of the transmitter phase estimates are shifted by some angular off-

set, θ, and all of the receiver phase estimates are shifted by a corresponding negative phase

offset, −θ. This type of ambiguity, and the analogous scenario with log-magnitude scaling,

is captured by the A�R and A�I null-spaces. Unless additional constraints are available for TI

or RI, the sub-space defined by A�R and A�I can be ignored from an estimation standpoint

since the ambiguity cannot be resolved.

The third and fourth sets of vectors, A�τ and A�ρ , relate additional phase offsets in the

transmitter and receiver phase estimates with corresponding shifts in the �b vector estimate.

Notice that as the A�τ and A�ρ columns are scaled by integer multiples of 2π, the result-

ing phase offsets for the transmitter and receiver transfer functions are changed by integer

multiples of 2π, which results in effectively unchanged transmitter and receiver phase re-

sponses. Additionally, since the elements of Qτ and Qρ are integer values, then 2π integer

multiples of A�τ and A�ρ result in integer shifts in the �b vector estimate. This repetitive be-

havior indicates that the �T (ω), �R (ω), and �b estimates are not unique. This conclusion is

somewhat intuitive since any 2π offset in �T (ω) or �R (ω) results in an identical set of sig-

nals. Unlike the first two sets of vectors, A�τ and A�ρ cannot be ignored, since they influence

the �b vector estimate.

Finally, the fifth null-space vector set, �a�κ , is a single vector. If, like the Qτ and Qρ

matrices that are assumed to have only “1” and “0” elements, the �d vector can be multiplied

by some value to produce an all-integer vector, then the κ estimate is not unique. As a

result, a unique κ solution is only mathematically possible if the �d vector contains at least

one irrational element. Although a requirement for an irrational distance is impractical, it

is relatively easy to select a set of distances such that only one solution can be accepted

as a realistic parameter value. A lower bound for the proximity of potential solutions is

derived in Appendix B. Like the A�τ and A�ρ vector sets, the �a�κ vector also affects the �b

vector estimate and cannot be ignored.
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The A�τ , A�ρ , and �a�κ vector sets all have an impact on the �b vector estimate. Two

additional model constraints can be applied to assist in the �b vector estimate. First, the

assumed model dictates that κ, �τ, �ρ, and �b are all frequency-independent. Therefore, the

coefficients in C�A of (5.41) that impact the κ, �τ, �ρ, and �b estimates must also be frequency-

independent. Additionally, the �b vector is constrained to be an all-integer vector. To enforce

this final constraint in the model parameter estimates, a nonlinear search is required.

5.5 Nonlinear Search

In Section 5.4, the linear least-squares estimate of Z in (5.41) was shown to include some

linear combination of the column vectors described in (5.43). Of these five sets of vectors,

three sets of vectors (A�τ , A�ρ , and �a�κ ) are associated with the �b estimate, which must be an

all-integer vector for the estimated model parameters to agree with the data. A nonlinear

search is described here to identify a solution that satisfies the all-integer constraint. The

general approach taken is to first obtain a frequency-independent estimate of �b using the

linear solution presented in the previous section, then search for null-space coefficients that

force the �b estimate to be an all integer vector.

The use of an unwrapped phase response ensures that the all-integer �b vector is constant

across all measured frequencies. Therefore, a �b estimate can be described as a function of

frequency-independent null-space coefficients, �c :

�b
(
�c
)
= BZ

(
�c
) �Σ

= B
(
A†M +

[
A�τ A�ρ �a�κ

]
�c �1

T

w

)
�Σ, (5.46)

where B =
[

0 Is

]
is a [nm × 3(nt + nr + 1) + nm] matrix that isolates the elements of Z

corresponding to the �b values, �c �1
T

w corresponds to the frequency-independent portion of

the coefficients in C�A, and �Σ is a [nw × 1] vector that performs a weighted average over

frequency.
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5.5.1 Optimal Weights

In this section, the optimal weights, �Σ
•
, for combining the frequency-dependent estimates

of �b are derived. Let B=A be the collection of nw separate estimates of �b obtained by applying

the pseudo-inverse of A to the measurement matrix M. Since �b is independent of frequency,

each of these estimates corresponds to a single, true, underlying vector, b̂
=

A, plus additive

noise:

B=A = BA†M

= BA†M̂ + BA†N

= b̂
=

A
�1

T

w + Nb. (5.47)

where M is defined in (5.33) and Nb is another [nm × nw] matrix of additive noise con-

structed as BA†N. Since each element of Nb is constructed from a linear combination of

the elements of N, the noise present in each element of Nb has effectively zero mean. In

addition, since each column of N is independent of the others, each column of Nb is also

independent of the other columns in Nb.

The optimal weights, �Σ
•
, are selected to satisfy:

�Σ
•
= arg min

�Σ

E
[
‖B=A�Σ − b̂

=

A‖2
]
, such that �1

T

w
�Σ = 1, (5.48)

where E [·] is the expected value operator and the �1
T

w
�Σ = 1 constraint ensures that the

weights sum to 1. The solution to (5.48) can be found using a Lagrange multiplier, α, to

satisfy the summation constraint,

L = E
[(

B=A�Σ − b̂
=

A

)T (
B=A�Σ − b̂

=

A

)]
+ α

(
�Σ

T�1w − 1
)
. (5.49)

The Lagrangian, L, is minimized by taking the derivative of (5.49) with respect to �Σ, setting

it equal to zero, and solving for �Σ:

�Σ
•
= U−1�1w

(
‖b̂=A‖2 −

α

2

)
, (5.50)
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where

U−1 =

(
‖b̂=A‖2�1w

�1
T

w +ΩN

)−1

(5.51)

and

ΩN = E
[
NT

bNb

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

b1 0 · · ·
0 σ2

b2

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.52)

Note that a large reduction in terms during the Lagrangian minimization is possible because

E [Nb] = 0. Each σ2
bi element corresponds to E

[
�N

T

bi
�Nbi

]
, where �Nbi is the ith column

vector of Nb. Substituting (5.50) into the �1
T

w
�Σ = 1 constraint of (5.48), ‖b̂=A‖2 − α

2 can be

found: (
‖b̂=A‖2 −

α

2

)
=

1

�1
T

w U−1�1w

. (5.53)

Finally, a closed-form solution to (5.48) is obtained by substituting (5.53) into (5.50):

�Σ
•
=

U−1�1w

�1
T

w U−1�1w

∝
[

1
σ2

b1

1
σ2

b2
· · ·

]T

. (5.54)

The proportionality with the inverse noise variance can be seen by noting that the structure

of U−1 naturally lends itself to the Woodbury Matrix Identity [150], also known as the

matrix inversion lemma. According to this identity formula, U−1 can be calculated as:

U−1 = Ω−1
N −

Ω−1
N
�1w
�1

T

wΩ
−1
N

1
‖b̂=A‖2 +

�1
T

wΩ
−1
N
�1w

(5.55)

where

Ω−1
N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ2

b1
0 · · ·

0 1
σ2

b2

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.56)

The relationship expressed in (5.54) indicates that the optimal weights are proportional
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to the inverse of the frequency-dependent noise variance. Since Nb = BA†N, the frequency-

dependent noise variance can be derived, similar to (5.35):

σ2
bi = E

[
�N

T

bi
�Nbi

]
= E

[
�N

T

i Γ
�Ni

]

=
1
2
�γ

T

⎛⎜⎜⎜⎜⎜⎝ 1
�Qi

⎞⎟⎟⎟⎟⎟⎠ , (5.57)

where Γ = (A†)TBTBA†, �γ is a [3nm × 1] vector containing the diagonal elements of Γ,

�Qi is a [3nm × 1] vector of squared complex SNR values for the ith column of M, and the

rightmost division operation is an element-wise inversion. The column-specific, squared

complex SNR values, �Qi, can be approximated in a single matrix, Q:

Q ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Is

Is

Is

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e2MR − �σ2

m
�1

T

w

�σ
2
m
�1

T

w

, (5.58)

where e2MR is an element-wise exponential operation that produces a [nm × nw] matrix of

squared magnitude values, �σ2
m is a [nm × 1] vector of complex noise variance measure-

ments corresponding to each received signal, and the division operation is again performed

element-wise. The set of three identity matrices accounts for the structure of �Ni discussed

in (5.34). With Q obtained as in (5.58), the optimal weights can be approximated as:

�Σ
• ∝

[
1
σ2

b1

1
σ2

b2
· · ·

]T

∝ 1

�γT(1/Q)
, (5.59)

with the division operations again performed element-wise. Note that even though each �b

element is specific to one of the received signals, a single, composite �Σ
•

is used here since

data from multiple signals contribute to the nw estimates of �b contained in B=A.
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5.5.2 Multidimensional Search

The definition of �b as a function of �c in (5.46) can be used to search for a value of �c that

produces an all-integer estimate. The search is performed by finding ĉb such that:

ĉb = arg min
�c
‖�b (

�c
) − [[�b

(
�c
)
]]‖2. (5.60)

Here �b(�c ) is defined as in (5.46) and [[·]] is the round function, which rounds each element

towards the nearest integer.

Although the nonlinear search can be performed as written, the error surface associated

with (5.60) is multi-dimensional and has an infinite number of local minima. As such, the

entire search space of possible �c values must be evaluated. Such an exhaustive search is

computationally demanding and time intensive.

5.5.3 Modified Search

A modification to the approach described in (5.60) was developed to avoid an exhaustive

multidimensional search by taking advantage of the null-space structure. Let ĉb be defined

as a set of null-space coefficients that result in an all-integer �b vector estimate, �b (ĉb). The

ĉb vector has the following sub-components corresponding to the A�τ , A�ρ , and �a�κ matrices

from (5.43):

ĉb =

[
�c T
τ �c T

ρ ĉκ

]T

=

[
�c T
τρ ĉκ

]T

, (5.61)

where �c T
τρ =

[
�c T
τ �c T

ρ

]T

and ĉκ results in the true estimate of κ when all other parameters

are correctly estimated. Then �b(ĉb) from (5.46) can be decomposed as:

�b (ĉb) = BA†M�Σ + B
[

A�τ A�ρ �a�κ

]
ĉb

= �bκ (ĉκ) + �bτρ
(
�c τρ

)
, (5.62)

with the �bκ (ĉκ) and �bτρ
(
�c τρ

)
vectors defined as

�bκ (ĉκ) = BA†M�Σ +
ĉκ
2π
�d, (5.63a)

�bτρ
(
�c τρ

)
= − 1

2π
Qτρ�c τρ. (5.63b)
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The above equations can be obtained from (5.62) through the definitions of A�τ , A�ρ , and �a�κ

in (5.43) and Qτρ from (5.14b).

The �c τ and �c ρ vectors that make up �c τρ are associated with the A�τ and A�ρ vector sets,

which were shown in Section 5.4 to relate additional phase offsets of the transmitter and

receiver transfer functions to corresponding changes in the �b estimate. Since these phase

offsets result in identical solutions as each �c τ and �c ρ coefficient is increased by an integer

multiple of 2π, the “true” vectors, ĉτ and ĉρ, are largely irrelevant. In other words, any �c τρ

vector that results in an all-integer estimate of �b is equally valid.

With this in mind, note that for certain structures of Qτρ, bounds can be placed on the

�c τ and �c ρ element values and still allow for all possible �bτρ
(
�c τρ

)
values (within a modulo

2π range). For example, if the QTR and Qτρ matrices have no more than two “1” values per

row (which is envisioned for all applications), then each element of the �bτρ
(
�c τρ

)
vector can

be constrained to lie between ±1. These boundaries for �bτρ
(
�c τρ

)
, combined with (5.62),

provide a bound for each individual element of �b (ĉb):

���bκ (ĉκ)�� ≤ �b (ĉb) ≤ ���bκ (ĉκ)��, (5.64)

where ĉb and ĉκ are defined as in (5.61) and the ��·�� and ��·�� operations denote element-wise

ceiling and floor operations, respectively. Equation (5.64) implies that given the true scalar

value ĉκ, each integer element of �b (ĉb) must be one of two integer values, either ���bκ (ĉκ)��
or ���bκ (ĉκ)��, resulting in 2M possible vectors. To determine the appropriate combination of

M integer operations, note that (5.63b) requires �bτρ
(
�c τρ

)
to lie in the column space of Qτρ.

Let c represent a potential value of ĉκ. The best combination of integer operations, ĥ,

for a given c is chosen to satisfy:

ĥ (c) = arg min
�h∈H

‖P�τρ
(
f
(
�bκ (c) , �h

)
− �bκ (c)

)
‖, (5.65)

where �h is a binary vector contained in H, the set of all vectors containing only “1” and “0”
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elements, and the function f
(
�b, �h

)
is performed element-wise:

f (bi, hi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
��bi�� if hi = 0,

��bi�� if hi = 1.

(5.66)

In (5.65), the f
(
�bκ (c) , �h

)
term is an estimate of the all-integer �b (ĉb) vector, given a ĉκ

estimate, c, and an �h vector defining the combination of integer operations. The difference

operation, f
(
�bκ (c) , �h

)
− �bκ (c), corresponds to the resulting �bτρ

(
�c τρ

)
estimate from this

combination of c and �h. Finally, the projection operation and norm provide a measure

of the portion of the �bτρ
(
�c τρ

)
estimate that cannot be accommodated by the model since

�bτρ
(
�c τρ

)
must reside in the column space of Qτρ.

The structure of (5.65) can be adapted to find the most appropriate ĉκvalue:

ĉκ = arg min
c
‖P�τρ

(
f
(
�bκ (c) , ĥ (c)

)
− �bκ (c)

)
‖, (5.67)

where ĥ (c) and f
(
�b, �h

)
are defined as in (5.65) and (5.66), respectively.

Substituting �bτρ
(
�c τρ

)
= f

(
�bκ (ĉκ) , ĥ (ĉκ)

)
− �bκ (ĉκ) into (5.63b), �c τρ is obtained from an

estimate of ĉκ:

�c τρ = −2πQ†τρ
(
f
(
�bκ (ĉκ) , ĥ (ĉκ)

)
− �bκ (ĉκ)

)
+Q�τρ�c τρ. (5.68)

Similar to the case for A�R and A�I discussed in Section 5.4, the Q�τρ in the above equation

represents a null space that describes the phase offset ambiguity between the transmitter

and receiver transfer functions. Without any further model constraints, this null space, like

the A�R and A�I subspaces, can be ignored.

Equation (5.67) indicates that for every c value considered in the search for ĉκ, an inde-

pendent ĥ
(
�c
)

must first be found, which requires the comparison of 2nm potential �h vectors.

While this one-dimensional search is an improvement over the multidimensional search

described in Section 5.5.2, it is computationally intensive, particularly since nm grows ex-

ponentially with the number of transducers.
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One method to further streamline the nonlinear search is to introduce additional a priori

information about the anticipated values of κ. For example, nominal values for κ can be

calculated based on the propagating environment (material, thickness, propagation mode).

Based on these nominal values, the search space for (5.67) can be limited to values that

result in dispersion estimates that are in the vicinity of the nominal values. Note that al-

though a priori information is used at this point, it is not being used to estimate parameters,

rather the nominal information selects between parameters that satisfy both the measured

data and model constraints.

5.6 Model-Based Parameter Estimation Summary and Discussion

The model-based parameter estimation algorithm is summarized in Table 5.1. This table

illustrates that even though the derivation is somewhat complicated, the implementation is

straightforward and tractable. The algorithm is built upon the assumption that the system of

linear equations in (5.12) accurately reflects the behavior of the recorded signals in M. The

algorithm also assumes that sufficient samples are used to ensure that the phase response

can be accurately unwrapped. Note that for the phase response to be accurately unwrapped,

the frequencies of interest must span a continuous band of spectral content with positive

SNR at each discrete frequency.

In addition to the above assumptions, it may be possible to incorporate additional con-

straints into the model to further constrain the resulting estimates. For example, realistic

dispersion relations for the frequencies of interest may be monotonic and bounds may be

available for the first or second derivatives of the transmitter and receiver transfer functions.

For the purposes considered here, however, all parameters are able to be approximated to a

satisfactory degree with the imposed constraints and additional constraints are unnecessary

complications.
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Table 5.1: Summary of model-based parameter estimation algorithm for characterizing
wave propagation in a homogeneous medium.

Problem Setup: The application-specific propagation model is determined and all mea-
surements are described in terms of the model parameters.

• Define QT, QR, Qτ , and Qρ based on model assumptions.

• Define M, �σ2
m and �dm with measured data.

– Limit frequencies of interest to a continuous spectrum.

– Positive SNR in each FFT bin.

– Unwrap phase responses in MI.

Distance Vector Estimation: A priori distance measurements are projected onto data-
and model-driven unit-vectors to obtain an estimate of the actual distance vector.

• Compute �v �TR as the eigenvector corresponding to the largest eigenvalue of
P �TRMIPΔMT

IP
�

TR as per (5.37).

• Use (5.40) to compute coefficients:

[
d
�

�d
�

]
=

[
�v �TR Q �TR

]T
�dm.

• Estimate distance vector �d = d
�
�v �TR +Q �TR

�d
�
as per (5.39).

• Define A with �d estimate as shown in (5.13a).

Nonlinear Search: The null-space coefficients �c τ, �c ρ, and ĉκ are found to augment the
linear solution.

• Estimate optimal weighting coefficients, �Σ
•
, as in (5.59).

• Search for ĉκ = arg min
c
‖P�τρ

(
f
(
�bκ (c) , ĥ (c)

)
− �bκ (c)

)
‖ as in (5.67), where ĥ (c)

and f (·) are defined in (5.65) and (5.66).

• Compute �c τρ = −2πQ†τρ
(
f
(
�bκ (ĉκ) , ĥ (ĉκ)

)
− �bκ (ĉκ)

)
from (5.68).

Final Solution: Combine nonlinear search results with least-squares solution to obtain
final estimate of Z.

• Calculate Z = A†M +
[

A�τ A�ρ �a�κ
] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�c τ

�c ρ

ĉκ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦�1T

w as in (5.41).
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5.7 Experimental Validation

The model-based parameter estimation technique for wave propagation in a homogeneous

medium has been applied to two separate experimental datasets: (1) guided waves excited

by a single transmitter and recorded by multiple identical receivers at various distances

from the transmitter, and (2) guided waves propagating between sensor pairs of a distributed

array composed of six PZT transducers, each with independent transmit and receive transfer

functions. Although the two examples presented here are based on the S0 and A0 guided

wave modes, it is important to note that the algorithm is applicable to any wave-based

application for which the analyzed signals behave according to the assumed propagation

model. This section describes the experimental setup, model assumptions, and assumption-

specific algorithmic details, and then presents parameter estimation results.

Algorithmic performance is a challenging concept when working with experimental

data since the estimated parameters cannot be compared to “true” parameter values. The

concept of “model fit” will be used here, which entails substituting the estimated parameters

into the assumed model and comparing the resulting signals with measured data. This

technique provides a mechanism to gauge how well the assumed model and estimated

parameters are able to describe the measured data. Presumably, if the algorithm is able

to accurately describe the measured signals, then the parameters are likely to be accurately

estimated. This assumption has been found to be true to a large degree with one exception –

in many cases multiple dispersion curve offsets, κ, can be used to describe the data equally

well.

5.7.1 Experimental Setup

Figure 5.3 illustrates the experimental setup for the first multi-signal scenario consid-

ered here. A single PZT transducer excites the fundamental symmetric, S0, and anti-

symmetric, A0, modes of a 1524 × 2438 × 3.18 mm plate of 6061 aluminum, which is

93



15
24

 m
m

Excitation transducer

2438 mm

Laser vibrometer measurements 

Figure 5.3: Experimental setup for laser-vibrometer data. Guided waves are excited by a
single transmitter and recorded at multiple distances with a scanning laser vibrometer.

assumed to be isotropic and homogeneous. Only two modes are excited because the fre-

quency range of the excitation signal is below the cutoff frequency of higher-order modes

[124]. The signals are recorded by a scanning laser vibrometer at distances of 545 mm,

606 mm, 626 mm, and 687 mm from the transmitter along a single radial line; therefore

�dm = [ 545 606 626 687 ]T. The measurement distances and plate size were specif-

ically chosen to allow the direct arrival of each mode to be isolated in the time domain

without overlap with the other mode or reflections from either mode, which allows each

mode to be handled independently by the approach proposed here. Since 200 waveforms

were averaged to produce each measurement, the noise-floor for each laser vibrometer

recording was more than 60 dB below the power of the largest frequency component. As

such, the �σ
2
m vector elements, for both modes, were set to 0.001 times the power of the

largest frequency component in each respective signal.

The second set of experimental data corresponds to the experimental setup described in

Chapter III. The measured distance vector for the second experimental dataset, sorted for

readability and expressed in mm, was obtained by measuring the physical distance from

transducer to transducer for each transmitter-receiver pair:

�dm = [236 254 264 286 321 363 379 . . .

410 455 490 523 538 581 609 667]T.
(5.69)
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For this second dataset, the signals were oversampled and thus occupy a very narrow range

in the frequency domain. Therefore, the electronic noise levels, �σ2
m, were estimated by

computing the power spectrum of each signal and then selecting the median value. The

resulting �σ2
m vector is:

�σ
2
m = [0.017 0.018 0.013 0.005 0.003 0.005 0.001 . . .

0.004 0.004 0.005 0.003 0.003 0.002 0.003 0.001]T,
(5.70)

where each element of �σ2
m above corresponds to the propagation distance in (5.69). Note

that the noise floor varies slightly between transducer pairs and is not dependent on propa-

gation distance. Although the transducers do excite both S0 and A0 modes, the S0 mode is

sufficiently dominant to treat the recorded signals as single-mode. All boundary reflections

were removed from the recorded waveforms by windowing the direct arrivals.

Signal processing was performed with MATLAB (The Mathworks, Natick, MA) run-

ning on a Hewlett-Packard laptop (Hewlett-Packard Co., Palo Alto, CA) with an Intel Core2

Duo CPU (Intel Corp., Santa Clara, CA) operating at 2.26 GHz with 4 GB of RAM and

running Windows Vista Home Premium (Microsoft Corp., Redmond, WA). The model-

based parameter estimation algorithm was configured to evaluate 1000 potential ĉκ values

for each algorithm execution, which required less than 1 second to complete for the first

dataset (four received signals). In contrast, the second dataset (15 received signals) re-

quired approximately 80 seconds to complete. For both cases, the modified non-linear

search described in Section 5.5.3 consumed over 90% of the computation time.

5.7.2 Common Transfer Functions

The first set of model assumptions to be discussed corresponds to the case where the trans-

mit and receive transfer functions are assumed to be identical for all recorded signals, i.e.,

all signals share a common transmitter and receiver transfer function. Note that because all

transmitter and receiver transfer functions are identical, the transmitter and receiver trans-

fer functions cannot be distinguished from one another. As such, the QR and Qρ matrices
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are null and QT = Qτ = QTR = Qτρ =
�1m. Under these assumptions, the structures for A

and Z are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1m
�0m

�0m −�d� �0m
�0m 0

�0m
�1m

�1m
�0m −�d −�d 2πIs

�0m
�1m

�0m
�0m −�d �0m 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TR + RR

TΔ + RΔ(
�τ + �ρ

)�1T

w

�p T

�k
T

κ�1
T

w

�b�1
T

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.71)

Since the Q �TR matrix is a single vector with identical-valued elements, the final estimate

of �d is obtained by projecting �dm onto two unit vectors, �v�TR and Q �TR. Note that for the

first set of experimental data, two modes are present. Since the propagation distances are

identical for both modes, the MI matrix used in (5.38) is composed of an SNR-weighted

sum of the MI for each mode, which ensures that all available data are used to estimate �d.

Analysis of A� reveals that the entire null space of A is spanned by two vectors, A�τ and

�a�κ . Since QTR =
�1m, the Q�TR, A�R and A�I matrices are null. Similarly, since Qτ =

�1m and

Qρ is null, A�τ is a single vector and A�ρ is null.

Figure 5.4 shows model fit results that reflect the ability of this model to fit the first set

of experimental data. The x-axis of the waterfall plot corresponds to time, while the y-axis

reflects propagation distance. Each of the four measured time domain signals is indepen-

dently scaled for presentation purposes and displayed in Figure 5.4 with a vertical offset

equal to the measured propagation distance. The estimated signals are generated by substi-

tuting the estimated parameters into the propagation model and are presented in a similar

fashion, with signal scaling identical to the scaling used for the corresponding measured

signals and vertical offset equal to the estimated distances. Errors in distance estimates

are manifested as vertical separations between the measured and estimated signals, errors

in propagation loss estimates result in amplitude discrepancies, and errors in dispersion or
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Figure 5.4: Model fit results for experimental data under assumptions that all transmitter
and receiver transfer functions are identical. Guided waves are excited by a single trans-
mitter and recorded at multiple distances with a scanning laser vibrometer.

transfer function estimates impact the signal shapes and amplitudes. Figure 5.4 indicates

excellent model fit between the estimated model parameters and measured data. Since the

same PZT transducer and laser vibrometer were used for all recorded signals, the assump-

tion about identical transmitter and receiver transfer functions is valid. Even if the PZT

transducer is not isotropic, the fact that the signals were recorded along a single radial line

from the transmitter ensures that the transmitter transfer function is identical for all of the

signals.
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Figure 5.5: Comparison of wavenumber vs. frequency dispersion estimates for experimen-
tal data under assumptions that all transmitter and receiver transfer functions are identical.
Guided waves are excited by a single transmitter and recorded at multiple distances with a
scanning laser vibrometer.

Figure 5.5 compares the estimated dispersion curves for each mode to nominal disper-

sion curves for a 3.18 mm thick aluminum plate. Although a perfect match is not expected

because of temperature, pressure, and thickness discrepancies, the estimates closely match

the nominal values. Note that with only four received signals, the error surface associ-

ated with (5.67) has an infinite number of periodic local minima. The appropriate ĉκ was

selected by bounding the nonlinear searches to produce a S0 wavenumber between 0 and

0.402 rad/mm and an A0 wavenumber between 0.402 and 0.817 rad/mm for the lowest

frequency considered (156 kHz).

In contrast, Figure 5.6 represents the model fit for the same common transfer function

assumptions but when applied to the second set of experimental data, which uses 15 dif-

ferent pairs of six separate transducers. Note that since the number of recorded signals is

different for the two datasets, (5.71) was updated accordingly, which is the only change

between the handling of the two datasets. Although all of the transducers are of the same

size and shape and similarly bonded to the plate, algorithmic performance is somewhat

degraded in comparison to Figure 5.4. In Figure 5.6, almost all signal estimates exhibit

visible phase offsets from the measured signals.
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Figure 5.6: Model fit results for experimental data under assumptions that all transmitter
and receiver transfer functions are identical. Guided waves were generated with 15 unique
transmitter-receiver pairs from a sparse, distributed array of six permanently attached trans-
ducers.
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5.7.3 Independent Transfer Functions

In contrast to Section 5.7.2, the assumed propagation model is expanded to accommodate

transducer-specific transmit and receive transfer functions. Recall from Chapter III that a

round-robin data acquisition scheme was used to collect data. Therefore, for the second

dataset, Transducer 1 is never used to record and Transducer 6 is never used to transmit. As

such, matrices are defined so that the algorithm estimates five transmitter transfer functions

(1-5) and five receiver transfer functions, (2-6), and their respective phase offsets. The QT,

QR, Qτ , and Qρ matrices are thus defined as follows:

QT = Qτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.72a)

QR = Qρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (5.72b)

Unlike the prior case, the QT and QR matrices defined above have a column-space

spanning nine dimensions (n�TR = 9), which means that the projection matrix P �TR projects

onto a six-dimensional space (n�TR = 15− n�TR = 6) and the Q �TR matrix is composed of nine

orthonormal vectors. Therefore, the final estimate of �d is obtained by projecting �dm onto a

ten-dimensional space (one dimension for �v �TR and nine dimensions for Q �

TR).

Figure 5.7 depicts the ‖P�τρ
(
f
(
�bκ (c) , ĥ (c)

)
− �bκ (c)

)
‖ values from (5.67) for both sets

of model assumptions. Notice that the more accurate model results in lower error values in

general, which is due primarily to the dimensionality of Q�τρ.
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Figure 5.7: Comparison of error metric values for the nonlinear search using experimental
data from a sparse, distributed array of six transducers. Note that the error is plotted as
a function of the k(ω) estimate for the lowest frequency at which k(ω) estimation is per-
formed (105 kHz). The overall error is lower and minima more pronounced for the case of
transducer-specific transfer functions.

Figure 5.8 is analogous to Figure 5.6 for the previous set of model assumptions. How-

ever, Figure 5.8 reflects a significantly improved model fit. The additional degrees of free-

dom in the �d estimate (ten degrees of freedom vs. two for the common transducer model)

allow a much better estimate of the propagation distances. All measured signals appear to

be well-approximated, both in shape and amplitude, which indicates accurate estimates of

both the independent transfer functions as well as the dispersion curve. The small vertical

offsets are attributed to inaccuracies in the distance measurements.

The composite transmitter-receiver transfer functions for each recorded waveform are

shown in Figure 5.9. The thick line in the foreground corresponds to the single estimate

of the common transmitter-receiver transfer function from the previous section. The 15

thin lines in the background correspond to the 15 independent transmitter-receiver trans-

fer function estimates (i.e. the inverse Fourier transforms of T1 (ω) R2 (ω), T1 (ω) R3 (ω),

· · · , T5 (ω) R6 (ω)). This figure illustrates that the 15 transducer pairs are best modeled by

slightly different transfer functions, which is the cause of the minor phase error visible in

Figure 5.6.
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Finally, Figure 5.10 depicts the estimated dispersion curves for the two sets of assump-

tions. Note that for this particular case, the dispersion estimates are in very close agreement.

This is not surprising, particularly since the independent transfer function estimates are so

similar to one another. Had the transducer functions exhibited larger discrepancies, the

model mismatch would likely manifest itself as error in the wavenumber estimate. The dif-

ference between the estimated and nominal dispersion relations is likely due to the realities

of the experimental setup (plate thickness, temperature, humidity, pressure, etc.).
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Figure 5.8: Model fit results for experimental data under assumptions that transmitter and
receiver transfer functions are transducer-specific. Guided waves were generated with 15
unique transmitter-receiver pairs from a sparse, distributed array of six permanently at-
tached transducers.
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ing experimental data from a sparse, distributed array of six transducers. For the common
transfer function case, a single transmitted signal is assumed (thick line). When indepen-
dent transfer functions are modeled, each composite signal is associated with a unique
transmitter-receiver combination (thin lines).
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Figure 5.10: Comparison of (a) wavenumber vs. frequency and (b) phase velocity estimates
for experimental data from a sparse, distributed array of six transducers.
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5.8 Summary

This chapter has presented a model-based approach that estimates wave propagation param-

eters from a set of recorded signals. A general wave propagation model is presented and a

linear system of equations is constructed. Circularly-symmetric complex noise is analyzed

in the context of the associated phase and log-magnitude noise distributions, which are both

shown to have effectively zero mean and variances proportional to the square of the com-

plex SNR for SNR values greater than 10 dB. The algorithm obtains a closed-form estimate

of the propagation distances by projecting a priori measured distances onto two or more

orthonormal vectors based on the propagation model and measured data. The remaining

model parameters are obtained by first solving a linear system of equations and then aug-

menting the linear solution with a nonlinear search to incorporate integer-based model con-

straints. The nonlinear search is performed with a streamlined single-dimensional search.

Algorithmic performance is demonstrated with two sets of experimental data using guided

waves that correspond to two different sets of model assumptions, demonstrating that the

proposed generalized framework can be readily adapted to meet individual application

needs.

The primary contribution of this chapter is a model-based algorithm for characteriz-

ing wave propagation in a homogeneous medium with minimal a priori information. This

approach allows systems incorporating acoustic, electromagnetic, or elastic waves to char-

acterize dispersion curves, propagation loss, propagation distances, as well as transmitter

and receiver transfer functions in situ at the time of test, thereby avoiding potentially erro-

neous a priori assumptions.

From the perspective of guided wave imaging, the MBPE algorithm presents a method

to adaptively estimate the transducer transfer functions, dispersion relations, propagation

loss, and transducer spacings of a distributed array, in situ, without the need for any addi-

tional measurements or equipment. This information can then be used to further improve

guided wave imaging performance through parameter compensation techniques discussed
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in Chapter VI.

106



CHAPTER VI

PARAMETER COMPENSATION

Chapter IV introduced minimum variance imaging, which exhibits significant improve-

ments in imaging performance when phase information is used in the imaging algorithm.

The trade-off, however, is that the use of phase information makes the algorithm more

sensitive to errors in a priori assumptions about the phase of the back-propagated signals.

These errors come from several sources, including differences in transducer transfer func-

tions, scattering fields, and dispersion. The poor imaging performance demonstrated in

Figure 4.9 and Figure 4.10 highlights the need to compensate for these sources of error.

Chapter V presented the model-based parameter estimation (MBPE) method to char-

acterize the propagation environment in situ at the time of test. The algorithm is capable

of simultaneously estimating propagation parameters from a sparse, distributed array of

ultrasonic transducers, such as the dispersion relations, transducer transfer functions, prop-

agation distances, and propagation loss.

This chapter investigates methods for integrating the adaptive parameter estimates from

MBPE into the guided wave imaging process. Section 6.1 introduces the concept of the

ω–k mapping algorithm, which can be used to perform dispersion compensation efficiently,

in contrast to the frequency domain back-propagation algorithm discussed in Chapter III.

Section 6.2 then uses the ω–k mapping algorithm to improve imaging performance by

compensating the differenced signals for the transducer transfer functions and dispersion.

Both nominal and MBPE parameter estimates are used to experimentally demonstrate the

benefits of in situ parameter estimation. Finally, Section 6.3 discusses the benefits and

challenges of compensating for parameters prior to baseline subtraction.
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6.1 Frequency-wavenumber (ω–k) mapping

The ω–k mapping algorithm can be described as a conversion from the time/frequency

domains to the distance/wavenumber domains. The algorithm was originally proposed by

Wilcox [85]. To begin, recall from (3.3) the LTI system model for a guided wave after

propagating a distance d in a lossless media can be represented in the time domain as:

m (t) =
∫ +∞

−∞
M (ω) e jωtdω

=

∫ +∞

−∞
X (ω) e− j(k(ω)d−ωt)dω. (6.1)

The above equation can be considered as a spatio-temporal solution to the 1-D wave equa-

tion, evaluated at x = 0. The more general solution, for any propagation distance, x, is

m (x, t) =
∫ +∞

−∞
X (ω) e− jk(ω)de j(k(ω)x+ωt)dω, (6.2)

where the positive x-direction has been chosen to be opposite the direction of propagation.

Note that for time t = 0, the above equation becomes:

m (x) =
∫ +∞

−∞
X (ω) e jk(ω)(x−d)dω. (6.3)

Recall the following well known relationships for dispersive materials from (3.1) and (3.2):

ω = cp (ω) k (ω) , (6.4a)

dω = cg (ω) dk, (6.4b)

where cp (ω) and cg (ω) are the phase and group velocity, respectively, expressed as func-

tions of radian frequency. Also note that if the wavenumber-frequency relationship, k (ω), is

monotonically increasing, it can be expressed alternatively as ω (k), since there is a unique

one-to-one relationship. Equation (6.2) can be rewritten by first substituting cg (ω) dk for

dω,

m (x) =
∫ +∞

−∞
X (ω) cg (ω) e jk(ω)(x−d)dk, (6.5)
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and then expressing ω as a function of k,

m (x) =
∫ +∞

−∞
X (k) e jk(x−d)dk, (6.6)

where k (ω (k)) = k and X (k) = X (ω (k)) cg (ω (k)). The above equation indicates that the

inverse Fourier transform of X (k), which is a signal in the distance domain, will contain a

dispersion-free wavepacket at d. Note that the dispersion-free wavepacket is not identical

to the original wavepacket, x (t), since the frequency domain signal was mapped into the

wavenumber domain with ω (k) and multiplied by cg (ω (k)). In practice, the dispersion-

free wavepacket appears very similar to the dispersion-free time domain wavepacket since

the ω–k mapping is nearly linear (see Figure 3.4).

Another important point is that the ω–k mapping shown here can be applied to the

entire M (ω) signal without any a priori knowledge of the d values associated with each

wavepacket. Summarizing (6.1)-(6.6), the ω–k mapping algorithm can be performed as:

m (x) =
∫ +∞

−∞
M (ω (k)) cg (ω (k)) e jkxdk, (6.7)

which only requires a Fourier transform of the measured signals, knowledge of the disper-

sion relations, k (ω) and cg (ω), resampling of M (ω) and cg (ω) at regularly spaced k, and

an inverse Fourier transform operation.

Figure 6.1 demonstrates the dramatic impact that dispersion compensation can have on

dispersive signals. For demonstration purposes, the excitation signal was chosen to be a

single-cycle, Hamming-windowed, 300 kHz oscillation, which significantly increases the

bandwidth of the signal. The increased bandwidth translates to a larger range of propaga-

tion velocities, and therefore the effects of dispersion are similarly increased. The simulated

signal contains four echoes, corresponding to propagation distances of 100, 200, 550, 575,

and 600 mm. Note that in Figure 6.1a the individual arrival times have been obscured

by signal spreading and interference between signals. After compensating for dispersion,

however, the distance domain signals clearly depict each of the five arrivals at the corre-

sponding distance.
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Figure 6.1: Demonstration of ω–k mapping algorithm with simulated data for a single-
cycle Hamming-windowed sinusoid with center frequency of 300 kHz. (a) Time domain
signals after propagating 100, 200, 550, 575, and 600 mm. (b) Corresponding dispersion
compensated distance domain signals.

This approach to dispersion compensation has a distinct advantage over the frequency

domain back-propagation algorithm introduced in Chapter II in that an entire guided wave

image can be generated by performing the ω–k algorithm once per measured signal (as

opposed to once per measured signal per pixel). This represents a dramatic reduction in

computational complexity, and is therefore adopted for all dispersion compensated guided

wave images throughout this chapter.

6.2 Parameter Compensation after Baseline Subtraction

Recall from Chapter IV, that when analytic signals (with phase information) were used

within the guided wave imaging algorithms, imaging performance was severely degraded.

This section demonstrates the progression of performance improvements obtained by (1)

compensating for dispersion through the ω–k mapping algorithm with nominal wavenum-

bers, (2) performing the mapping algorithm with MBPE estimates of the wavenumbers,

and (3) further compensating for variations in transducer transfer functions as measured by

the MBPE algorithm.

To facilitate comparison, some minor signal conditioning is performed in addition to
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Figure 6.2: Conventional imaging with experimental data of a 5 mm through-hole. Imag-
ing was performed with the envelope of distance domain signals mapped with nominal
parameter values, an instantaneous window, and the 5 mm scattering field generated as per
Grahn [122]. (a) Image displayed using a 20 dB scale, and (b) normalized pixel values
versus distance from damage location (ĉ = 3.84).

the ω–k mapping algorithm for all dispersion-compensated images. The transfer function

for the propagating wave is first deconvolved from the received signal prior to performing

the mapping algorithm. The propagating wave is assumed to be the excitation function, un-

less MBPE estimates are available, in which case the combined T (ω)R (ω) product is used.

This operation must be performed before the mapping algorithm because the ω–k mapping

algorithm changes the propagating wavepacket. Although a number of methods are avail-

able to perform the deconvolution, frequency domain division will be used throughout this

text. It is well understood that deconvolution in the frequency domain creates some numeri-

cal instability issues due to division by small numbers. For that reason it is implied that any

frequency domain division operation is accompanied with additional filtering to address

these issues. The deconvolution operation avoids any artifacts or issues that may arise from

the spectral changes associated with the ω–k mapping, e.g. a remapped spectrum may not

produce a wavepacket with maximum amplitude at the center.
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Figure 6.3: Minimum variance imaging with experimental data of a 5 mm through-hole.
Imaging was performed with the envelope of distance domain signals mapped with nominal
parameter values, an instantaneous window, and the 5 mm scattering field generated as per
Grahn [122]. (a) Image displayed using a 20 dB scale, and (b) normalized pixel values
versus distance from damage location (ĉ = 8.61).

6.2.1 Dispersion Compensation with Nominal Dispersion Relations

The experimental time domain signals described in Chapter III and used for imaging in

Chapters III and IV were converted to the distance domain using the ω–k mapping algo-

rithm described in the previous section using nominal dispersion curves computed using

the Vallen Dispersion software (Vallen Systeme GmbH, Munich, Germany). Unlike the

time domain signals that exhibit dispersive effects, such as wavepacket spreading and the

associated amplitude loss, the dispersion-compensated signals are expected to maintain the

wavepacket shape and decay according to a 1/
√

d geometric spreading loss. Figure 6.2 and

Figure 6.3 depict conventional and minimum variance imaging performance, respectively,

with the envelope of the analytic representation of the distance domain signals. These fig-

ures represent a relatively minor improvement over the time domain images generated in

Chapter IV, indicating that the envelope of the time domain signal is not changing signifi-

cantly as the wavepacket propagates over distance.

In contrast, the phase of the wavepacket does change significantly as the wavepacket
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Figure 6.4: Conventional imaging with experimental data of a 5 mm through-hole. Imag-
ing was performed with complex (analytic) distance domain signals mapped with nominal
parameter values, an instantaneous window, and the 5 mm scattering field generated as per
Grahn [122]. (a) Image displayed using a 20 dB scale, and (b) normalized pixel values
versus distance from damage location (ĉ = 7.02).
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Figure 6.5: Minimum variance imaging with experimental data of a 5 mm through-hole.
Imaging was performed with complex (analytic) distance domain signals mapped with
nominal parameter values, an instantaneous window, and the 5 mm scattering field gen-
erated as per Grahn [122]. (a) Image displayed using a 20 dB scale, and (b) normalized
pixel values versus distance from damage location (ĉ = 8.76).

propagates over distance. The phase changes caused significant image degradation in Fig-

ure 4.11 and Figure 4.12. Figure 6.4 and Figure 6.5 illustrate conventional and minimum

variance imaging performance, respectively, with the analytic representation of the distance
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Figure 6.6: Minimum variance imaging with experimental data of a 5 mm through-hole.
Imaging was performed with complex (analytic) distance domain signals mapped with
MBPE dispersion estimate and nominal transducer transfer functions, an instantaneous
window, and the 5 mm scattering field generated as per Grahn [122]. (a) Image displayed
using a 20 dB scale, and (b) normalized pixel values versus distance from damage location
(ĉ = 10.73)

domain signals. These figures represent a notable improvement over the time domain im-

ages presented in Chapter 4. Note that the increased noise floor observed in Figure 6.5,

as compared to the simulated equivalent of Figure 4.7, is most likely due to the combi-

nation of imperfect baseline subtraction, imperfect dispersion compensation, and errors in

the approximated scattering characteristics. These inaccuracies affect imaging performance

twofold: not only are imaging artifacts created by poor baseline subtraction performance,

but inaccurate model assumptions result in the peak not reaching the maximum possible

value, which is manifested as an increased noise floor.

6.2.2 Dispersion Compensation with MBPE Estimates

Figure 6.6 illustrates minimum variance imaging performed with signals converted to the

distance domain using k (ω) estimates obtained with the MBPE algorithm presented in

Chapter V. The image represents an improvement over Figure 6.5 both through improved

damage localization as well as fewer imaging artifacts.

From Figure 5.10, the cp (ω) estimates differ from the nominal values by approximately
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Figure 6.7: Minimum variance imaging with experimental data of a 5 mm through-hole.
Imaging was performed with complex (analytic) distance domain signals mapped with
adaptive MBPE parameter estimates, an instantaneous window, and the 5 mm scattering
field generated as per Grahn [122]. (a) Image displayed using a 20 dB scale, and (b) nor-
malized pixel values versus distance from damage location (ĉ = 11.48)

0.05 mm/μs at 300 kHz, or about 1%. As the propagation distance increases, this rela-

tively small difference produces significant changes in the phase of back-propagated sig-

nals. For example, consider a 300 kHz sinusoid propagating in a non-dispersive media with

a propagation velocity of 5.35 mm/μs. The distance domain signal is generated by simply

re-assigning the sampling times to propagation distances. In this case, a 1% difference

in propagation velocity represents a 90◦ phase discrepancy after just 450 mm of propaga-

tion. As such, the imaging performance improvement observed in Figure 6.6 is expected

since the k (ω) estimate obtained from MBPE is expected to be more accurate than than the

nominal curve. It should be pointed out that the reduction in artifacts in Figure 6.6 over

Figure 6.5 is due to an increase in the pixel value of the damage location rather than any

significant change in the noise floor.

In addition to the effects of dispersion, variations in transducer transfer functions can

also degrade imaging performance. Figure 6.7 displays the imaging performance that is

achieved by deconvolving the transducer transfer functions obtained from the MBPE algo-

rithm prior to performing the ω–k mapping algorithm with MBPE k (ω) estimates. This
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operation removes the minor phase variations between transducer transfer functions visible

in Figure 5.9. Since the estimated parameters are very similar to the 7-cycle Hamming-

windowed toneburst excitation, only minor improvement can reasonably be expected. For

more dramatic variations in transducer transfer functions, for example if the phase for one

or more transducers is inverted or if the transducers exhibit sensitivity (i.e. magnitude) vari-

ations, compensating for the adaptively estimated transducer transfer functions is expected

to have a more pronounced impact.

Figure 6.7 demonstrates that adaptive parameter estimates obtained in situ at the time of

test can be successfully incorporated into the MVDR algorithm to achieve superior imaging

performance. Although only adaptive estimates of dispersion and transducer transfer func-

tions have been demonstrated here, additional improvement can reasonably be expected

through the compensation of both adaptively estimated propagation distances and propaga-

tion loss.

6.3 Parameter Compensation Before Baseline Subtraction

In addition to improving guided wave imaging performance, adaptive parameter estimates

also offer the potential to perform environmentally robust baseline subtraction without the

database of baseline signals required by OBS. By compensating for the environmentally

dependent propagation parameters, T (ω), R (ω), and k (ω), before baseline subtraction, the

differencing operation can isolate changes due to defects or damage and avoid artifacts due

to environmental changes.

Consider a deployed SHM system in which the environmental conditions are allowed

to change. As a result, the transmitter transfer function, T (ω), receiver transfer function,
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R (ω), and frequency-dependent wavenumber, k (ω), may not be consistent between mea-

surements. Two measurements are obtained from the system under two different environ-

mental conditions:

Mb (ω) =Tb (ω) Rb (ω)
∞∑
i=0

Ψbi (ω) e− jkb(ω)di , (6.8a)

Mc (ω) =Tc (ω) Rc (ω)
∞∑

i=0

Ψci (ω) e− jkc(ω)di+

Tc (ω) Rc (ω)Ψ× (ω) e− jkc(ω)d× , (6.8b)

where Ψ (ω) is a transfer function representing both scattering and propagation loss for the

ith scatterer. The subscript “b” indicates that the transfer function or wavenumber is associ-

ated with the damage-free baseline signal, a “c” subscript indicates a parameter associated

with the current, or test signal, and a “×” subscript corresponds to a damage site in the

structure. Note that in a realistic system with boundaries, multiple wave packets would

likely be observed from a single damage site. However, a single wavepacket is considered

here for simplicity without any loss of generality.

In order to compensate for the difference in environmentally dependent parameters,

accurate estimates of the dispersion relations, k (ω), and transmitter and receiver transfer

functions, T (ω) and R (ω), for both the baseline and test signals are required. With this

information, the signals can be deconvolved with their respective transmitter and receiver

transfer functions,

M̄b (ω) =
Mb (ω)

Tb (ω) Rb (ω)

=Γb (ω)
∞∑

i=0

Ψbi (ω) e− jkb(ω)di , (6.9a)

M̄c (ω) =
Mc (ω)

Tc (ω) Rc (ω)

=Γc (ω)
∞∑
i=0

Ψci (ω) e− jkc(ω)di+

Γc (ω)Ψ× (ω) e− jkc(ω)d× , (6.9b)
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where Γ (ω) represents the deconvolved and filtered transducer transfer function. With ideal

deconvolution and filtering, Γ (ω) will be a “1” over a fixed spectral range.

The environmental and frequency dependent wavenumber values, kc (ω) and kb (ω), can

then be compensated using the ω–k mapping described earlier in this chapter:

M̄b (k) =M̄b (ωb (k)) cg (ωb (k))

=Γb (k)
∞∑

i=0

Ψbi (k) e− jkdi , (6.10a)

M̄c (k) =M̄c (ωc (k)) cg (ωc (k))

=Γc (k)Ψ× (k) e− jkd×+

Γc (k)
∞∑

i=0

Ψci (k) e− jkdi . (6.10b)

In the above equations Γ (k) = Γ (ω (k)) cg (ω (k)) and Ψ (k) = Ψ (ω (k)).

Finally, if Γc (k) ≈ Γb (k) and Ψci (k) ≈ Ψbi (k), then baseline subtraction can be per-

formed effectively with the distance domain signals:

m̄c (x) − m̄b (x) ≈ γc (x − d×) ∗ ψ× (x − d×) , (6.11)

where m̄b (x), m̄c (x), γb (x), and ψ× (x) are the inverse Fourier transforms of M̄b (k), M̄c (k),

Γb (k), and Ψ× (k), respectively. Equation (6.11) indicates that the results of baseline sub-

traction will contain a scattered wavepacket located at d×.

Two important points should be raised here with respect to the M̄ (k) functions. First,

even if the Ψci (ω) and Ψbi (ω) signals are identical in the frequency domain, each of these

transfer functions will be mapped to the wavenumber domain differently. Therefore, in or-

der for the wavenumber domain versions to be identical, or nearly identical, theΨci (ω) and

Ψbi (ω) signals must be approximately uniform over frequency and not change significantly

due to environmental effects. Similarly, the mapping from frequency domain to wavenum-

ber domain does not ensure that the mapped wavenumber domains are overlapping. As

such, some filtering of the M̄ (k) waveforms is necessary to isolate the overlapping spectra.

118



6.3.1 Simulated Example

A simulated example is provided here to help demonstrate parameter compensation before

baseline subtraction. Simulations were performed for the 914 mm × 914 mm × 3.18 mm

aluminum plate depicted in Figure 3.1b over a range of temperatures from 22-39◦ C.

Temperature-dependent dispersion relations were computed using the Vallen Dispersion

software program (Vallen Systeme GmbH, Munich, Germany) with both the longitudinal

and shear velocities changing by 0.001 mm/(μs◦C). The excitation signals were also sim-

ulated with slight amplitude (0.05%/◦C) and phase (0.03 rad/◦C) changes in the excitation

signals. No damage was simulated; therefore, baseline subtraction results are expected to

be zero.

Figure 6.8 illustrates the model-fit performance of the baseline signals in both the time-

and frequency domains for the simulated array at 22◦ C. Both plots depict the direct arrival

signals with a thick gray line. The thin, colored lines are generated using parameter es-

timates from the MBPE algorithm and are colored according to the propagation distance.

Algorithmic performance can be gaged by observing the model fit performance, which is

a measure of how well the estimated direct arrivals, generated with parameter estimation

results, agree with the measured, direct arrivals. Figure 6.8 represents excellent model fit,

indicating that the MBPE algorithm is able to correctly identify the underlying parameters.

The estimated dispersion relations over the range of temperatures are shown in Fig-

ure 6.9 as wavenumber vs. frequency. As with Figure 6.8, the true values are shown with

thick gray lines and the estimated values are overlaid in color (color coded according to the

simulated temperature). Figure 6.9 indicates how little the dispersion relations change with

temperature. For the 2 kHz frequency range shown, the rate of change is approximately

1.5 × 10−5mm/(μs◦C).

Figure 6.10 illustrates the simulated signals associated with transducers three and six

of Figure 3.1b. Each signal is color-coded according to the temperature at which it was

recorded. The inset of Figure 6.10a highlights how much the direct arrivals are changing
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Figure 6.8: Comparison of all simulated signals associated with the spatially distributed
array at 22◦ C and those generated with estimated parameters. Signals are color-coded
according to transducer spacing. (a) Time domain waterfall plot. Signals are scaled for
presentation purposes. (b) Frequency domain.
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Figure 6.9: Comparison of wavenumber estimates over temperature. The narrow frequency
range of 2 kHz is used to highlight how little the frequency-wavenumber relationship
changes with frequency.

with temperature. Subsequent echoes can be expected to exhibit even greater change with

temperature due to the increased propagation distance. As a result, significant residual

energy will remain after baseline subtraction in the time domain, even though there is no

damage present.

Figure 6.10b shows the frequency domain signals after deconvolution with the T (ω)

and R (ω) transfer function estimates obtained from the MBPE algorithm. From the inset,

the relationship between signals becomes clear: the deconvolved signals appear slightly
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Figure 6.10: Comparison of one simulated signal from the spatial array color-coded ac-
cording to temperature displayed in (a) time domain signals and (b) deconvolved frequency
domain signals.
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Figure 6.11: Comparison of one simulated signal from the spatial array color-coded ac-
cording to temperature displayed in (a) distance domain and (b) wavenumber domain.

shifted in the frequency domain. This behavior is a result of slight changes in k (ω) between

measurements and is not necessarily uniform across the entire spectrum.

Figure 6.11 contains the signals from Figure 6.10 mapped from the frequency domain

to the wavenumber domain using the temperature-dependent k (ω) estimates. Both the dis-

tance domain signals and wavenumber domain signals are in excellent agreement over the

entire range of simulated temperatures. The degree of agreement can be seen in Figure 6.12,

which shows the difference between distance domain estimates. From Figure 6.12, the
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Figure 6.12: Differences between distance domain estimates generated using ideal direct
arrivals, color-coded according to temperature difference.

distance domain signals are in agreement to four significant digits. The distance domain

signals provide a clear improvement over the dispersive time domain signals in that the

temperature and propagation dependence have both been removed. In addition to compen-

sating for the temperature dependence, the signals in the distance domain are much easier

to interpret since they are dispersion free.

6.3.2 Implementation Challenges

Performing parameter compensation before baseline subtraction is attractive because it pro-

vides robustness to homogeneous environmental changes without the need for OBS. How-

ever, although simple in concept, baseline subtraction with compensated signals presents

some significant challenges for practical implementations. Small errors in parameter es-

timation, deconvolution, ω–k mapping, or overall propagating assumptions can result in

significant baseline subtraction residuals. This section briefly describes these sources of

error and their anticipated impact on baseline subtraction.

6.3.2.1 Direct Arrivals

The first implementation challenge is associated with the MBPE algorithm. Parameter

estimation error with the MBPE algorithm is directly related to model-mismatch between

the direct arrivals and the assumed propagation model. This model-mismatch is usually the
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result of the presence of an additional propagating mode, an undesired reflection, or even

direct arrival truncation in the time domain.

Figure 6.13 shows the magnitude response of a set of simulated direct arrivals in which

several of the signals are slightly truncated in the time domain, shown with thick, gray lines.

Truncation of a signal may be necessary in some scenarios when an undesired reflection

or second mode has temporal overlap with a direct arrival. The corresponding parameter

estimation results are overlaid. Recall that the parameter estimation algorithm must be

performed over a continuous spectrum and requires positive SNR at each frequency. The

spectral truncation visible in Figure 6.13 is a result of this requirement and is completely

unrelated to the time domain truncation that is causing the ripples in the magnitude re-

sponses. As a whole, there is a stark contrast between Figure 6.13 and Figure 6.8. Since

the direct arrivals do not behave according to the assumed propagation model of the MBPE

algorithm, the algorithm is unable to accurately identify the underlying parameters. As

such, the model fit results are visibly degraded.

For the case of direct arrival truncation considered here, the average standard devia-

tion of the difference between the estimated and true frequency response values is 0.38

(approximately 4% of the average magnitude response). These small parameter errors,

however, can be problematic for baseline subtraction. The impact of the erroneous esti-

mates in Figure 6.13 on deconvolution and frequency-wavenumber mapping are discussed

in the following two sections.

6.3.2.2 Deconvolution Error

This section considers the baseline subtraction residuals that result from deconvolution er-

ror. For this discussion, let the two recorded signals from the previous section be identical,

Mc (ω) = Mb (ω), and let the baseline signal, Mb (ω), be deconvolved and converted to the
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Figure 6.13: Comparison of all simulated signals associated with a spatially distributed
array at 22◦ C and those generated with estimated parameters when time domain truncation
is present in the direct arrivals. Signals are color-coded according to transducer spacing.

wavenumber domain perfectly. In mathematical terms, the following case is considered:

M̄b (k) = Γ̂ (k)
∞∑
i=0

Ψi (k) e− jkdi , (6.12a)

M̄c (k) = Γc (k)
∞∑
i=0

Ψi (k) e− jkdi , (6.12b)

where Γ̂ (k) is the “true” transfer functions that is common to both signals. If Γc (k) is

described as a sum of Γ̂ (k) and the deconvolution error, Γδ (k):

Γc (k) = Γ̂ (k) + Γδ (k) , (6.13)

then the baseline subtraction residual can be expressed as:

M̄c (k) − M̄b (k) = Γδ (k)
∞∑
i=0

Ψi (k) e− jkdi . (6.14)

From (6.14), a deconvolution error produces a baseline residual signal that mimics the

propagation distance, scattering characteristics, and propagation loss of the original sig-

nal. Therefore a baseline subtraction residual resulting from imperfect deconvolution will

mimic the distance-dependent decay of the baseline signal. Figure 6.14a shows the base-

line subtraction residual that results when deconvolution is performed with T (ω) and R (ω)

estimates from the truncated direct arrivals of the previous section. The residual is much

larger than the original simulation without deconvolution error. The apparent shift between
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Figure 6.14: Differences between distance domain estimates generated using imperfect
parameter estimates due to truncation, color-coded according to temperature difference. (a)
Deconvolution error. (b) Mapping error.

wavepackets between Figure 6.11a and Figure 6.14a is a result of the leading edge of the

direct arrival being truncated in the time domain, which results in the largest baseline sub-

traction residual at the leading edge of the wavepacket.

It should be noted here that the deconvolution error described in this section can also

result from two additional phenomena. First, the lack of deconvolution can cause a similar

effect as that shown in Figure 6.14a. Consider the case when the transmitter and receiver

transfer functions are identical but deconvolution is not performed, Γ (ω) = T (ω) R (ω).

During the ω–k mapping operation, each transfer function will be mapped differently since

ωc (k) � ωb (k). As a result, differencing the mapped signals will result in some baseline

subtraction residual. The severity of the residual will be dependent on both the spectral

shape of Γ (ω) as well as the difference between ωc (k) and ωb (k).

6.3.2.3 Dispersion Error

If the dispersion relations used for conversion from the frequency domain to the wavenum-

ber domain are inaccurate, then the signals in the wavenumber domain will contain some

inherent inaccuracies as well. This section investigates the implications of an imperfect

ω–k mapping operation. To isolate the effects of an imperfect mapping, begin with two
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identical functions from (6.9), in which both Γ (ω) and Ψi (ω) are uniform over frequency,

representing a best-case scenario. The ω–k mapping results in the following wavenumber

domain signals:

M̄b (k) = Γ (k)
∞∑

i=0

Ψi (k) e− jk̂di , (6.15a)

M̄c (k) = Γ (k)
∞∑

i=0

Ψi (k) e− jkcdi , (6.15b)

where the Γ (k) and Ψi (k) subscripts have been simplified for this example to underscore

that they are identical between signals. The kc term in (6.15a) can be described as the true

wavenumber, k̂, plus some offset, kδ (k):

kc = k̂ + kδ (k) . (6.16)

Substituting the above equation into (6.15):

M̄b (k) = Γ (k)
∞∑

i=0

Ψi (k) e− jk̂di . (6.17a)

M̄c (k) = Γ (k)
∞∑

i=0

Ψi (k) e− jkδ(k)die− jk̂di , (6.17b)

From (6.17), the effects of an imperfect mapping become clear: the ith wavepacket of the

test signal will exhibit a phase error of kδ (k) di. In other words, ω–k mapping errors will

result in a baseline subtraction error that increases over distance.

If the dispersion error, kδ (k), is expressed as a polynomial,

kδ (k) =
∞∑
i=0

κik
i, (6.18)

then the effects of low-order dispersion errors can be conceptualized relatively easily. For

example, if the dispersion error is a constant offset, then the resulting error is a phase offset

that increases linearly with distance, κ0di. Further, if the wavenumber error is linear with a

zero intercept, kδ (k) = κ1k, then the resulting error is a distance offset that increases by a

factor of κ1 with distance. Analysis of higher order modes becomes slightly less intuitive,

but can be envisioned as minor changes in location, phase, and shape with distance.
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Figure 6.14b depicts the baseline subtraction residual associated with the erroneous

k (ω) estimates from Section 6.3.2.1. It should be noted that the ratio between kδ (k) and

k is approximately 10−3. However, even with such a small error, the impact on baseline

subtraction is significant, particularly for long distances. This highlights the sensitivity of

the baseline subtraction algorithm to minor errors in k (ω).

6.3.2.4 Additional Environmental Effects

In addition to the sources of error already considered, there are several potential sources of

error that are indirectly related to the MBPE algorithm and parameter compensation prior

to baseline subtraction. Specifically, these are associated with inaccurate assumptions about

the propagation environment.

For example, the presence of an additional propagating mode effectively introduces

both a deconvolution and dispersion error, simultaneously. This is because T (ω) and R (ω)

are mode-specific and the dispersion relations of each mode, k (ω), will change indepen-

dently of the other.

Wilcox showed that while energy associated with the primary guided wave mode is

largely compressed in the distance domain during the ω–k mapping algorithm, the energy

associated with any secondary guided wave mode is spread out over distance [85]. Al-

though this behavior is beneficial for signal analysis, it is the change between two distance

domain signals that is of significance for baseline subtraction, and a secondary propagat-

ing mode will not change in the same manner as the primary mode. As such, significant

baseline subtraction residual can be expected from additional propagating modes.

Figure 6.15 shows typical distance domain error that occurs when an undesired mode

is present. Array simulations described in the previous section were repeated with the ad-

dition of the A0 mode, where the amplitude ratio of S0 to A0 was 10:1. Parameter estimates

from the mode-pure simulations were used for deconvolution and spectral mapping to iso-

late the model mismatch behavior. Figure 6.15a shows the presence of several additional
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Figure 6.15: Effects of a second mode. The ratio of S0 to A0 is 10:1.. (a) Distance do-
main estimates, color-coded according to temperature, and (b) Difference between distance
domain estimates, color-coded according to temperature difference.

“echoes” compared to Figure 6.11a, such as the one shown in the inset. These additional

“echoes” are due to the mismatch between the k (ω) of each mode. Figure 6.15b shows that

the residual differences between the distance domain estimates increase over temperature

at the location of these “echoes” from the second mode. It should be pointed out that the

system response to an additional mode is dependent on both the magnitude ratio and the

relationship between the k (ω) for each mode. Therefore, while the case presented here is

a representative example, mode impurity may have more or less severe impacts in other

frequency ranges, for other modes, or with other materials.

Another challenge is that environmental factors affecting the dispersion relations and

transmitter and receiver transfer functions, such as temperature, pressure, and humidity,

may also influence the propagation loss and scattering characteristics of structural reflec-

tors. Like dispersion error discussed in the previous section, uncompensated changes in

propagation loss will result in baseline subtraction residuals that increase with distance.

On the other hand, changes in scattering characteristics will only affect those wavepackets

associated with the changing scatterer. In addition to affecting the magnitude and phase
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of scattered energy, environmental changes can also be expected to influence both the ex-

citability of each mode and degree of mode conversion that occurs at each structural re-

flector, which can cause additional problems due to the presence of varying degrees of

secondary propagating modes. As a result, algorithmic performance cannot be expected to

be completely independent of the environment for complex structures.

Finally, signals that propagate over long distances and are exposed to broad temperature

ranges will be negatively affected by thermal expansion. The coefficient of thermal expan-

sion in metals is typically on the order of 10−5 ◦C−1. For SHM applications that operate

over a 10◦ C range, this translates to a 0.1 mm shift for each meter of propagation. If the

operating frequency is 400 kHz, the wavelength is only 13 mm, which means that thermal

expansion can result in a non-trivial phase error of 3◦/m. Therefore, although thermal

expansion is not a significant issue for laboratory experiments, it is an issue that will need

to be addressed in practical implementations. One interesting aspect of the thermal expan-

sion problem in distance domain signals, is that it is equivalent to a change in propagation

velocity in a non-dispersive time domain signal and can be addressed by performing BSS

in the distance domain.

6.4 Discussion

The baseline subtraction problem is an inherently ill-conditioned problem, meaning that

small changes or errors in the baseline or test signals can result in relatively large changes

or errors in the differenced signals. Considering that scattered energy from a defect or

damage will result in a signal 1-2 orders of magnitude smaller than a signal propagating

the same distance with non-absorbing geometric reflections, there is very little tolerance for

parameter estimation error. For example, to ensure baseline subtraction residual is 20 dB

lower than (0.01 times) the amplitude of the original signal, the phase of the environmen-

tally compensated baseline and test signals must be within 0.6◦ (0.01(180/π)). Taking this

one step further, if the direct arrival propagates 500 mm and kδ (k) from (6.18) is assumed
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to be a constant offset (which may be unfairly pessimistic), this phase requirement trans-

lates to κ0 less than 2× 10−5 rad/mm (0.01/500), requiring 5 significant digits in the MBPE

wavenumber estimates.

Guided wave imaging, on the other hand, is somewhat better conditioned than the base-

line subtraction problem. Small errors in parameter estimates result in small errors in the

pixel value computation. In fact, the sensitivity of minimum variance imaging to trans-

ducer transfer function and wavenumber estimation errors can be controlled somewhat

through the regularization factor, α. Even with a relatively small α, indicating a height-

ened sensitivity, a small phase error in the back-propagated, differenced signal will result

in a comparable change in pixel value.

In addition to the heightened sensitivity to parameter estimation error, baseline sub-

traction with environmentally compensated signals also requires some additional assump-

tions about the propagating environment that are inherently accommodated through the

knowledge-based OBS method. First, Ψci (ω) and Ψbi (ω) are assumed to (1) have a uni-

form power spectrum over the frequency-range of interest and (2) not change with the

environment. Neither of these assumptions have been experimentally validated, and may

have a significant impact on the baseline subtraction residual if they do not hold. Addition-

ally, the parameter compensation methods discussed in this chapter are only applicable to

propagation environments with a single propagating mode. The previous section illustrates

the negative effects of an additional propagating mode on baseline subtraction with envi-

ronmentally compensated signals. In contrast, OBS accommodates both of these issues by

recording the exact system response for any potential environmental condition.
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6.5 Summary

This chapter has presented two methods for incorporating adaptive model-based parameter

estimates into guided wave imaging algorithms. The chapter first introduced the ω–k map-

ping algorithm, which provides a computationally efficient means to compensate for disper-

sion. Parameter compensation after baseline subtraction was then demonstrated with both

nominal and adaptively estimated parameters. A significant improvement was shown with

adaptive parameter estimates obtained through the MBPE algorithm presented in Chap-

ter V, which is attributed to the fact that the adaptive estimates of the dispersion relations

and transducer transfer functions were obtained from measured data obtained at the time

of test. Finally, the concept of parameter compensation before baseline subtraction was

introduced, which provides a potential mechanism to compensate for homogeneous envi-

ronmental changes without the need for a database of baseline signals. Although parameter

compensation prior to baseline subtraction was validated via simulation, this approach was

shown to be extremely sensitive to parameter estimation errors, which may preclude its use

in practical applications.

The primary contribution of this chapter is the incorporation of adaptive parameter

estimates from the MBPE algorithm into ultrasonic guided wave imaging. The example

provided with experimental data illustrates the significant improvement in imaging that can

be achieved through the combination of parameter compensation with adaptive parameter

estimates and minimum variance imaging. Another contribution is the concept of param-

eter compensation prior to baseline subtraction. The ability to perform accurate baseline

subtraction over a range of environmental conditions is necessary for the use of SHM in

large structures that cannot easily be taken out of service, such as ship hulls, bridge gusset

plates, storage tanks, etc. Although several issues were raised that prevent the practicality

of the approach at this time, the method presents a viable tool to perform environmentally

robust baseline subtraction without OBS and may become practical as SHM technology

matures. The chapter also places the problem of baseline subtraction and prior work in the
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context of a commonly accepted propagation model, which yields a deeper understanding

of potential sources of error and their effects on baseline subtraction residual. Finally, this

chapter represents the first known application of the ω–k mapping algorithm to sparse,

distributed array imaging.
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CHAPTER VII

ADDITIONAL GUIDED WAVE IMAGING CONCEPTS

This chapter introduces two additional concepts associated with guided wave imaging that

were originally reported in [151, 152]. First, the issue of sparse, distributed array con-

figurations is addressed. A performance ratio is proposed that quantifies the ability of an

array to perform simultaneous defect detection and localization. Physical characteristics

of the array, including the number of sensors, their placement relative to one another, and

the sensor array’s relationship to the interrogation structure are all evaluated using this per-

formance ratio with minimum variance imaging. The performance ratio is then used to

evaluate some of the signal processing techniques discussed in Chapters III and IV: the

choice of excitation function, imaging algorithm, and data type (envelope data vs. analytic

signals). The second concept is related to characterizing damage (in addition to detecting

and locating it). Damage characterization is shown to be possible with experimental data

using minimum variance imaging and scattering behavior obtained from FEM simulations.

7.1 Array Configurations

Chapters III, IV, and VI have demonstrated that all images generated from guided wave

imaging algorithms include some degree of artifacts that result from waves that have re-

flected from both structural boundaries and internal scatterers. These imaging artifacts can

degrade imaging performance and therefore the ability of an array to detect and localize

damage. Several factors impact the sensitivity of a guided wave system to scattered and

reflected energy: (1) the imaging algorithm, (2) the physical array configuration, such as

aperture size, number of sensors, and sensor pattern, and (3) structural characteristics, such

as structure geometry and damage scattering behavior.

After generating an image with a guided wave imaging technique, damage detection

133



and localization can then be performed. Damage detection and localization present two

distinctly different challenges that share substantial overlap. On one hand, damage local-

ization identifies the most likely location of damage, typically by identifying the maximum

pixel value in an image. The location of the maximum pixel value in an image, however,

does not necessarily indicate that damage is present in the structure; even a damage-free

image will have a maximum pixel value. Damage detection, on the other hand, identifies

whether or not damage is present in a structure and is typically accomplished by establish-

ing a threshold that, if exceeded, indicates the presence of damage. These two challenges

are interrelated for guided wave images since each pixel is calculated independently. If a

threshold for damage detection can be established on a pixel-specific basis, the threshold is

by definition location dependent, and damage localization is thus achieved automatically.

The concept of establishing pixel-specific thresholds for damage detection, which was

recently proposed by Flynn and Todd [153, 154], represents a departure from previous

guided wave imaging performance metrics that are focused on image quality. These im-

age quality metrics typically characterize the performance of an array by comparing the

pixel value at one or more potential damage locations to the pixel values at all non-damage

locations for a single image. The use of pixel-specific thresholds, however, foregoes this

requirement and provides a more complete picture of an array’s ability to perform simulta-

neous damage detection and localization throughout the structure.

Since so many variables are associated with characterizing array performance, the scope

of this section is restricted to a single defect in a specific structure. A performance ratio is

first proposed to quantify array performance. The remaining sections then use this perfor-

mance ratio to evaluate the impact of imaging algorithm selection; physical characteristics

of the array, such as aperture size, number of transducers, and sensor pattern; scattering

characteristics of the defect; and excitation function.
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7.1.1 Pixel-Specific Performance Ratio

As mentioned above, damage detection is focused on determining whether or not damage

is present in a structure. By performing damage detection on a pixel-specific basis, dam-

age localization is automatically achieved. To perform damage detection, a pixel-specific

threshold, Txy, must be established that satisfies:

max
i j�xy

Pxy

(
Di j

)
< Txy < Pxy

(
Dxy

)
, (7.1)

where Pab

(
Dgh

)
is the pixel value at location (a, b) when damage is present at (g, h). The

above equation states that the threshold, Txy, must be set so that it is smaller than the pixel

value when damage is present at (x, y) and larger than the maximum pixel value at (x, y)

when damage is present elsewhere in the structure. To maximize robustness to system

noise, model errors, etc., the following performance ratio should be as large as possible for

all pixel locations, (x, y):

P̂xy =
Pxy

(
Dxy

)
maxi j�xy Pxy

(
Di j

) . (7.2)

In words, P̂xy is the ratio of the pixel value at (x, y) when damage is present at (x, y) to the

maximum pixel value at (x, y) when damage is present somewhere else in the structure,

referred to as the maximum artifact value at (x, y). If P̂xy > 1 for all pixel locations, then

pixel-specific thresholds can be established throughout the structure and any pixel value

that exceeds the pixel-specific threshold must also correspond to the most-likely damage

location. Therefore, damage detection and localization can be automated with a single

comparison between an image and set of pixel-specific thresholds.

From a statistical perspective, it should be noted that P̂xy has a direct impact on the

probability of damage detection, false-detect, and miss for location (x, y). Rather than

using the ratio from (7.2), an alternative, more comprehensive statistical model could be

employed that incorporates the probability of damage occurring at any given pixel location,

as well as the associated costs of false-detects and misses. This is the general approach
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taken by Flynn and Todd [153, 154]; however, their work effectively focuses on the pixel

value when damage is present and does not consider imaging artifacts.

Direct calculation of P̂xy requires simulation of the structure and array configuration

for every possible damage location. This can be extremely computationally demanding

when attempting to identify an array configuration that optimizes the pixel-specific perfor-

mance ratio. As such, only the most demanding of applications (such as high-performance

aerospace or space-borne) are likely to merit an extensive search for optimal array geome-

tries. The cases presented here, however, are intended to demonstrate to the reader those

factors that most strongly influence array performance.

7.1.2 Finite Element Modeling

As discussed in Chapter IV, the performance of minimum variance imaging is dependent on

the agreement of the steering vector used to calculate the pixel value, �exy, and the relation-

ship between back-propagated signals, ŝxy. Since the steering vectors are largely defined by

the scattering coefficients, ψmxy, accurate knowledge of scattering coefficients is necessary

to maximize imaging performance.

As part of a collaborative effort with the University College London, Dr. Paul Fromme

used three-dimensional finite element modeling (FEM) with the ABAQUS® software suite

to generate anticipated scattering fields for a notch using nominal 6061 aluminum mate-

rial properties [152]. The FEM simulation used explicit time integration, with linear brick

elements of 1.25 mm in the direction along the notch, 1 mm in the direction of the notch

thickness, and 0.795 mm through the plate thickness. Excitation of the S0 mode was per-

formed using opposing out-of-plane point-sources located at the top and bottom edges of

the plate with a 5-cycle Hamming-windowed toneburst at 400 kHz. Out-of-plane measure-

ments were obtained from one surface of the plate on a 49 mm × 61.25 mm grid centered

at the notch. Since both the excitation and the notch are symmetric about the center of the

plate and out-of-plane measurements are used, recorded data were assumed to contain pure
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Figure 7.1: S0 scattering behavior of a 15 mm long notch perpendicular to an incident S 0

wave at 0◦ shown for (a) all incident and scattered angles and (b) for incident angles of 0 ◦,
-45◦, and -90◦. Arrows indicate the direction of the incident wave relative to the center of
the polar plot.

S0. Because notches scatter energy differently depending on incident angle, the FEM simu-

lations were repeated for incident waves over a 90◦ range at 5◦ increments. The symmetries

of a through-thickness notch allow the scattering behavior for the remaining incident angles

to be inferred from these simulations.

The FEM simulation data generated by Dr. Fromme were used to obtain scattering

behavior through the same baseline subtraction technique described for guided wave imag-

ing. FEM simulation data obtained without the notch present were subtracted from FEM

data obtained with a notch. Differenced information from the rectangular grid was spa-

tially interpolated to obtain measurements located at 1◦ increments along a circle of ra-

dius 24 mm centered at the notch location. To better match the frequency content of the

experimental data, the interpolated signals were deconvolved with the excitation function

(5-cycle Hamming-windowed toneburst at 400 kHz) and filtered with a 12-cycle Hamming-

windowed toneburst at 300 kHz. Each of these 360 signals was then converted to the fre-

quency domain and the magnitude and phase of the signal at 300 kHz was used to determine

anticipated scattering behavior. All scattering behavior estimates were normalized to have

a magnitude of 1 if the differenced signal is the same amplitude and phase as a direct arrival

that has propagated the same distance.

Figure 7.1 shows the S0 scattering behavior observed from FEM simulations for a
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15 mm × 2 mm × 3.18 mm notch oriented along the y-axis (±90◦ notch orientation). Fig-

ure 7.1a depicts the magnitude of the differenced signal as a function of both incident and

scattered angle for all angles. Here both the incident and scattered angles refer to the wave

propagation direction, and are independent from one another. This means that for a scat-

terer located at the origin, the incident angle for a wave propagating from left to right, along

the x-axis, is 0◦ and from bottom to top, along the y-axis, is 90◦. Similarly, scattered en-

ergy propagating from the origin to the right has a scattered angle of 0◦ and from the origin

downward is a scattered angle of -90◦, regardless of the incident angle. Figure 7.1b repre-

sents the same information as Figure 7.1, displayed as a polar plot for incident angles of

0◦, -45◦, and -90◦. The color-coded arrows depict the incident wave propagation direction.

These figures show that for the 0◦ incident wave, the signal is largely reflected back towards

the source, producing two large lobes. The lobe in the forward (0◦) direction corresponds

to the lack of signal that will be evident in the differenced signal due to the “shadowing”

effect of the notch, while the lobe in the backward (180◦) direction corresponds to the re-

flected wave. Figure 7.1 highlights the directionally dependent nature of the scatterer, with

dependencies both on the incident and scattered angle.

7.1.3 Simulation Details

Performance ratios were obtained by simulating the plate and calculating images for a

single defect located at 20 mm increments in each direction of the plate (2025 total de-

fect locations). Note that although Pxy

(
Dxy

)
is accurate for each location considered, the

maxi j�xy Pxy

(
Di j

)
term in (7.2) is not necessarily maximized for the simulations considered

here since defect locations are restricted to discrete locations. Thus, as defect spacing is

reduced, performance ratios will either remain at the same levels or decrease. Therefore

defect increments must be sufficiently small to ensure that the resulting performance ratios

are not overly optimistic.

The simulation setup is similar to the simulations described in Chapter III. In almost
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Figure 7.2: Performance ratio maps on a dB scale with minimum variance imaging using a
6-sensor circular array with 100 mm, 250 mm, and 400 mm radius aperture size.

all simulations, the excitation function is a three-cycle Hamming windowed sinusoid at

300 kHz. The exception is when generating Figure 7.7, where the excitation signal is either

a three-, five-, or seven-cycle Hamming windowed sinusoid at 300 kHz. Unless otherwise

indicated, scattering behavior corresponds to a point-like, uniform scatterer, and all imaging

is performed in the time domain with the envelope of of the signals.

To aid in analysis, pixel values adjacent to transducers or defect locations were ignored

when computing the denominator of (7.2). The large pixel values associated with these

locations prevent useful data from being extracted from the performance ratio maps. All

pixel-specific performance ratios are shown on a dB scale.

7.1.4 Physical Array Configuration

The physical array configuration has a significant impact on performance. The array con-

figuration is characterized by the aperture size, number of sensors, sensor pattern, and

orientation of the array relative to the structure. In effect, the array configuration deter-

mines the spatial information that is obtained from the structure. An exhaustive study of

all possible configurations is clearly impossible, so a small subset of examples has been

chosen to demonstrate typical performance impacts from each of these factors.

First and foremost, the array aperture size appears to have the most significant impact.
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Figure 7.3: Performance ratio maps generated with minimum variance imaging and a four,
six, and eight-sensor rectangular pattern.

Figure 7.2 demonstrates pixel-specific performance ratios using minimum variance imag-

ing for six-sensor circular arrays with radii of (a) 100 mm, (b) 250 mm, and (c) 400 mm (in

addition, a six-sensor circular array with a radius of 17 mm is shown in Figure 7.5c). The

performance ratio maps are clearly affected by aperture size. Although the effects of edge

reflections are present in all simulations, the effects appear to be more pronounced for the

100 mm and 250 mm radii arrays. Since the overall performance ratio value decreases as

the aperture is increased from 250 mm to 400 mm, Figure 7.2 also suggests that for a given

application, sensor pattern, and interrogation structure, some optimal aperture size exists.

The number of sensors also plays a significant role in array performance. Performance

ratio maps for four, six, and eight-sensor rectangular patterns are shown for minimum vari-

ance imaging in Figure 7.3. Figure 7.3 indicates that, in general, the addition of sensors

provides an overall increase in the performance ratio throughout the structure but does not

appear to increase the maximum performance ratio. One can also infer from Figure 7.3

that since the performance ratio values in the immediate vicinity of the transducers are

lower than those further from the transducers (particularly the center of the structure in

Figure 7.3c), the addition of transducers will not necessarily increase the overall perfor-

mance of the array.

Figures 7.2b and Figure 7.4 demonstrate four different sensor patterns for a six sen-

sor array with approximately the same aperture sizes (a fifth can be found in Figure 7.3b).
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Figure 7.4: Performance ratio maps with minimum variance imaging using a 6-sensor array
arranged in (a) the experimental sensor arrangement, (b) a cross pattern, and (c) a triangular
pattern.
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Figure 7.5: Performance ratio maps with minimum variance imaging using a compact 6-
sensor array at three different locations on the interrogation structure.

Sensor patterns that exhibit spatial periodicity that resembles that of the interrogation struc-

ture can be expected to exhibit spatially periodic performance ratios. This can be observed

throughout Figure 7.3, where the spatial periodicity of the performance ratio is strongest.

Similar to the number of sensors, the sensor pattern appears to affect the spatial distribution

of performance rather than the peak performance.

The location and orientation of an array with respect to the interrogation structure must

also be considered. Figure 7.5 shows the performance ratio for a compact, six-sensor circu-

lar array with a 17 mm radius at three different locations on the structure. For this particular

structure, the imaging performance is clearly improved by centering the array in the struc-

ture; however, this observation may not hold for all structures. Figure 7.5 indicates that

optimal placement of a small array does little to improve array performance compared to
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Figure 7.6: Performance ratio maps generated with minimum variance imaging and various
scattering types: (a) 5 mm through-hole, (b) +45◦ notch and (c) -45◦ notch.

the benefits of increasing the array aperture.

Finally, the scattering behavior of anticipated defects also plays a noticeable role in

array performance and should be considered when selecting an array configuration. Defects

that exhibit highly directional scattering patterns will not distribute energy in the same

manner as point-like scatterers and, as such, the pixel values and performance ratios will

vary with scattering characteristics. Figure 7.6 shows performance ratio maps for a 5 mm

through-hole, and two 15 mm notches oriented at ±45◦. These three scattering types are

of interest because while the point-like scattering used up to this point redirects energy

isotropically, providing a general indication of imaging performance, the through-hole and

notch are directional. The through-hole and notch differ in that the scattering behavior

for a through-hole is independent of the incident angle, while the scattering behavior of a

notch is highly dependent of angle. This concept is explored in more detail by Fromme

[155]. Figure 7.6 indicates that the ability of an array to detect and locate a defect is

dependent on the scattering behavior of a defect, and therefore anticipated defect types

must be considered in choosing an array configuration.

7.1.5 Signal Processing

The choice of excitation function, imaging algorithm, and data format also play a critical

role in imaging performance. Similar to the last section, this section uses performance ratio
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Figure 7.7: Performance ratio maps generated with minimum variance imaging and a (a)
three-, (b) five-, or (c) seven-cycle Hamming-windowed, 300 kHz toneburst.

maps to illustrate the impact that each of these factors has on the ability to simultaneously

detect and locate damage.

7.1.5.1 Excitation Function

The excitation function plays a tremendous role in the ability to detect and locate damage.

Although the range of possible excitation functions is far too extensive to evaluate in their

entirety, Figure 7.7 demonstrates the performance ratio maps for three-, five-, and seven-

cycle Hamming-windowed tonebursts centered at 300 kHz. There is a marked performance

improvement as the time-support, and therefore spatial-support, of the excitation function

is reduced. This is to be expected, since the longer duration excitation signals will have

additional overlap with echoes. The trade-off for compact time-support is, however, a

broader bandwidth and the associated increase in dispersive effects. Chapters III, IV, and

VI, dealt with the effects of dispersion and associated methods to adaptively estimate and

compensate for them. Therefore, Figure 7.7 serves to underscore the combined benefits

that come from dispersion compensation: not just improved imaging performance, but an

ability to use wider-bandwidth excitation signals.

143



200 400 600 800

200

400

600

800

(a)

200 400 600 800

200

400

600

800

(b)

200 400 600 800

200

400

600

800

 

 

0

2

4

6

8

10

(c)

Figure 7.8: Performance ratio maps generated with conventional imaging and various scat-
tering types: (a) 5 mm through-hole, (b) +45◦ notch and (c) -45◦ notch.

7.1.5.2 Imaging Algorithm

An imaging algorithm inherently strikes a balance between sensitivity to the direct arrival

of scattered energy and robustness to reflections of scattered energy (and errors in a pri-

ori information, which is beyond the scope of this section). In contrast to Figure 7.6,

Figure 7.8 depicts performance ratio maps for conventional imaging in the presence of a

5 mm through-hole, and two 15 mm notches oriented at ±45◦. Comparing Figure 7.6 to

Figure 7.8, minimum variance imaging clearly offers significant improvements over con-

ventional imaging. This improvement is expected, since the MVDR weight vectors are se-

lected specifically to reduce the pixel value when the back-propagated signals do not agree

with the steering vector, �exy. What may not be expected is the degree of improvement.

The maximum performance ratio is approximately 11 dB in Figure 7.8a, while Figure 7.6a

exhibits performance ratios in excess of 25 dB. In fact, approximately 60% of Figure 7.8b

and Figure 7.8c have performance ratios less than 1 (< 0 dB), which means that these pixel

locations will have a higher amplitude when damage is located elsewhere in the structure

than when damage is actually at that location. Alternatively, the minimum variance imag-

ing algorithm provides pixel-specific performance ratios much greater than 1 for over 98%

of the structure.

One concern that has been raised with respect to minimum variance imaging is as-

sociated with the inherent sensitivity of the algorithm to potentially inaccurate scattering
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Figure 7.9: Performance ratio maps generated with conventional imaging when no scat-
tering information is available under the following conditions: (a) 5 mm through-hole, (b)
+45◦ notch and (c) -45◦ notch.
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Figure 7.10: Performance ratio maps generated with minimum variance imaging when no
scattering information is available under the following conditions: (a) 5 mm through-hole,
(b) +45◦ notch and (c) -45◦ notch.

assumptions. For example, consider the case when no scattering assumptions can be made

about the defect. How severe will the degradation in minimum variance imaging perfor-

mance be? Should conventional imaging be used when scattering information is not avail-

able?

Figure 7.9 and Figure 7.10 contain performance ratio maps for a 5 mm through-hole,

+45◦ 15 mm notch, and -45◦ 15 mm notch, for conventional and minimum variance imag-

ing, when no scattering assumptions are made. These can be compared directly to Fig-

ure 7.8 and Figure 7.6 to see the performance degradation that can be expected when scat-

tering information is unavailable, or cannot be assumed. It should be pointed out that the

“brightening” of many of the pixels in Figure 7.9b and Figure 7.9c is simply due to the
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Figure 7.11: Comparison of performance ratio maps when minimum variance imaging is
used vs. conventional imaging for: (a) 5 mm through-hole, (b) +45◦ notch and (c) -45◦

notch.

shift in color-scale; the performance ratio is largely unchanged. Although both algorithms

exhibit some minor degradation in performance (perhaps even less than one might expect),

minimum variance imaging provides superior performance ratios values over conventional

imaging, even when no scattering assumptions are made.

To underscore the advantages of minimum variance imaging over conventional imaging

under erroneous scattering assumptions, Figure 7.11 graphically illustrates the improve-

ment observed between Figure 7.9 and Figure 7.10. Each pixel value in Figure 7.11 was

obtained by subtracting the pixel values of Figure 7.9 (in dB) from those of Figure 7.10

(in dB). Figure 7.11 indicates that although 1-2% of the structure suffer a degradation in

performance ratio of up to -4 dB, minimum variance imaging offers an improvement of up

to 14 dB for the vast majority of the structure, compared to conventional imaging.

7.1.5.3 Phase Information

Chapter IV and VI demonstrated with simulated and experimental data, respectively, the

significant improvement that can be achieved when phase information is used in the imag-

ing algorithm. Figure 7.12 demonstrates the performance ratio maps when the analytic

signals are used for imaging the same types of scatterers as in Figure 7.6 (which used

the envelope of the analytic signals). As expected, the performance ratio maps all exhibit
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Figure 7.12: Performance ratio maps generated with minimum variance imaging and var-
ious scattering assumptions when phase information is used: (a) 5 mm through-hole, (b)
+45◦ notch and (c) -45◦ notch.
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Figure 7.13: Comparison of performance ratio maps when phase information is used vs.
envelope data for: (a) 5 mm through-hole, (b) +45◦ notch and (c) -45◦ notch.

improved ratios. To highlight the degree of improvement, Figure 7.13 depicts the improve-

ment observed when using phase information over envelope data, similar to Figure 7.11.

Figure 7.13 indicates that although there are a few areas of the structure (52 mm2 in Fig-

ure 7.13b and 16 mm2 in Figure 7.13c) that experience a degradation in performance ratio

of up to -1 dB, most of the structure experiences a performance ratio improvement of 10-

25 dB when phase information is used.

7.2 Damage Characterization

In addition to damage detection and localization, elliptical guided wave imaging algorithms

also offer the potential to perform damage characterization. The geometric structure of a

147



damage site or defect, such as size, orientation, etc., has a profound impact on the scatter-

ing behavior. Significant efforts have been conducted to characterize and experimentally

validate the scattering behavior of guided waves for through and partial through-thickness

holes [134, 156, 135, 157, 122], notches [136, 158], and cracks [137, 159]. Since guided

wave imaging algorithms have the ability to incorporate the anticipated scattering behavior

of potential defects, these imaging algorithms can be used to distinguish between defect

types. More specifically, the sensitivity of minimum variance imaging to anticipated scat-

tering behavior allows the algorithm to clearly distinguish between damage types. This

approach is similar to that used by Zhang et al. [138], which characterizes the scattering

field of potential defects using bulk waves.

Damage characterization is performed by generating minimum variance images for var-

ious scattering assumptions and determining which image contains the strongest response

at the potential damage location. The damage characteristics corresponding to scattering

assumptions that cause the strongest response are taken to be the characteristics of the

defect or damage.

7.2.1 Experimental Results

Experimental data was collected as described in Chapter III. Rather than use damage-free

baseline data for baseline subtraction, however, baseline signals are chosen to be the data

collected just prior to the introduction of each notch. This isolates the scattered energy from

each notch without the complications of scattering from multiple defects. In the interest of

simplicity, the envelope of the time domain signals is used for all imaging and parameter

compensation is not performed.

Figure 7.14 illustrates damage characterization results when conventional imaging is

used to characterize damage. Each subfigure of Figure 7.14 was generated with scattering

assumptions corresponding to a 15 mm notch with orientations ranging from -75◦ to +90◦

in 15◦ increments. All scattering assumptions were based on FEM simulations described
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in Section 7.1.2. The use of conventional imaging for damage characterization leaves some

ambiguity as to the notch orientation, as significant peaks can be observed in the lower

right corner for many of the images. One can identify consistent imaging artifacts visible

between transducer pairs 1-2, 2-3, and 5-6 throughout Figure 7.14. These artifacts are

characteristic of poor baseline subtraction and are likely due to small temperature variations

that occurred during data acquisition.

Figure 7.15 illustrates damage characterization results using minimum variance imag-

ing and the same data as used for Figure 7.14. Since Figure 7.15i clearly has the strongest

response in the area of interest, the notch can be correctly discerned to be oriented at +45◦.

Figure 7.14 and Figure 7.15 demonstrate that while conventional imaging is unable to iden-

tify the damage type, minimum variance imaging is able to provide a clear indication of the

notch orientation, and is therefore capable of performing damage characterization.

Figure 7.16 depicts minimum variance imaging results for scattering assumptions cor-

responding to a 15 mm notch oriented from -75◦ to 90◦ in 15◦ increments, similar to Fig-

ure 7.15, when a -45◦ notch is located in the center of the plate. The notch location in

the center of the array is particularly challenging since it is a relatively large defect and

strongly affects the direct arrivals of several transducer-receiver pairs. Although some of

the imaging artifacts visible between transducers is likely due to some degree of baseline

subtraction error, the fact that the notch is located in the direct path between transducers

certainly contributes to these artifacts as well. Similarly, since the notch is located rel-

atively close to all transducers (as compared to the previous case), geometric reflections

of the scattered signals are expected to be much stronger. As such, the location of the

notch may be contributing to the artifacts located outside of the array polygon. Even in the

presence of these imaging artifacts, however, the minimum variance images in Figure 7.16

accurately indicate a notch orientation of -45◦ based on the observed scattering behavior

from just six transducers.
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Figure 7.14: Comparison of conventional imaging results generated with +45◦ notch
data and anticipated scattering behavior based on FEM simulations of a 15 mm through-
thickness notch. (a)-(l) correspond to notch angles -75 ◦ to +90◦ in 15◦ increments. The
white square indicates the area of interest based on conventional imaging.

150



mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−75°

(a)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−60°

(b)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−45°

(c)

mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−30°

(d)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−15°

(e)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

0°

(f)

mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

15°

(g)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

30°

(h)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

45°

(i)

mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

60°

(j)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

75°

(k)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

90°

(l)

Figure 7.15: Comparison of minimum variance imaging results generated with +45◦ notch
data and anticipated scattering behavior based on FEM simulations of a 15 mm through-
thickness notch. (a)-(l) correspond to notch angles -75 ◦ to +90◦ in 15◦ increments. The
white square indicates the area of interest based on conventional imaging.

151



mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−75°

(a)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−60°

(b)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−45°

(c)

mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−30°

(d)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

−15°

(e)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

0°

(f)

mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

15°

(g)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

30°

(h)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

45°

(i)

mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

60°

(j)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

75°

(k)
mm

m
m

 

 

0 200 400 600 800
0

200

400

600

800

−20

−15

−10

−5

0

90°

(l)

Figure 7.16: Comparison of minimum variance imaging results generated with -45◦ notch
data and anticipated scattering behavior based on FEM simulations of a 15 mm through-
thickness notch. (a)-(l) correspond to notch angles -75 ◦ to +90 ◦ in 15◦ increments. The
white square indicates the area of interest based on conventional imaging.
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Figure 7.17: Maximum pixel value of minimum variance images shown as a function of
assumed notch orientation for actual notches oriented ±45◦.

The images presented in Figure 7.15 and Figure 7.16 correspond to large, 15◦ incre-

ments, that allow the reader to visualize the process. However, this becomes impractical

as the orientation intervals are reduced. Figure 7.17 depicts the maximum pixel value for

minimum variance images generated with scattering assumptions corresponding to notch

orientations with 1◦ intervals. From Figure 7.17, the maximum pixel value is obtained

when a notch of +47◦ is assumed for the +45◦ notch and when a notch of -38◦ is assumed

for the -45◦ notch. The 2◦-7◦ discrepancy in notch orientation may be due to any number of

issues that have been raised throughout this text, including imperfect baseline subtraction,

dispersive effects, errors in scattering assumptions, etc..

The experimental results shown in Figures 7.15, 7.16, and 7.17 demonstrate that mini-

mum variance imaging with a sparse, distributed array of transducers is capable of charac-

terizing the orientation of simulated damage. The approach demonstrated here for discern-

ing notch orientation can be reasonably expected to successfully characterize other damage

features as well, including type, size, depth, and shape, and also points to the need for more

extensive FEM work.

7.3 Summary

This chapter has introduced a performance metric and method to analyze the ability of

a distributed array to simultaneously detect and localize defects, demonstrated the effects
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of array geometry and signal processing on that performance metric, and shown that in

addition to detection and localization, damage characterization is also possible through the

use of minimum variance imaging.

To address the fact that imaging artifacts are an inherent part of guided wave imaging,

a pixel-specific performance ratio was defined that is the ratio of the pixel value when

damage is present at that location to the maximum artifact value at that pixel location when

damage is present elsewhere in the structure. Although the use of a pixel-specific ratio

for array performance characterization can be computationally demanding, requiring the

simulation of all possible damage types and locations, it provides a clear indication of how

robust the array configuration is to system noise and modeling errors and whether or not

simultaneous damage detection and localization can be performed.

Array aperture size, excitation function, phase information, and the choice of guided

wave imaging algorithm were all shown to have a significant impact on array performance

for the cases considered. Minimum variance imaging provided performance ratios that

were an order of magnitude better than conventional imaging. The number of sensors,

sensor pattern, and defect characteristics were also shown to impact performance ratios,

although not to the same degree as imaging algorithm, excitation function, and aperture

size. Finally, it is important to point out that all of the characteristics evaluated here are

dependent on the specific interrogation structure. A structurally centered circular array of

a specific radius may be optimal for one structure, yet perform miserably for another. This

is because the performance ratio, P̂xy, is largely driven by the imaging artifacts, which are

produced by scattered energy reflected from geometric features.

The ability to extract information about potential defects, such as size, depth, and orien-

tation, can be used to discriminate between actual damage and benign changes or artifacts

and provide supporting information for decisions regarding stress state, remaining life,

and/or the need for additional inspection, repair, or replacement. Such decisions lie at the

core of condition-based maintenance schedules, which are critical to aircraft airworthiness
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and sustainment. Minimum variance imaging has been shown to be capable of performing

damage characterization by using various scattering assumptions, which are obtained with

FEM simulation, to generate multiple images of the structure. The damage characteristics

that create the strongest pixel value at the defect location are taken to be those of the damage

site or defect. The approach was shown to be effective with experimental data for 15 mm

notches located both inside and outside the array polygon, in two different orientations.
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CHAPTER VIII

CONCLUSIONS

The research presented here has investigated the benefits and challenges of adaptive disper-

sion compensation and ultrasonic guided wave imaging for SHM. Guided wave imaging

techniques offer a promising tool for performing SHM in large plate-like structures, such

as commercial aircraft skins, ship hulls, and storage tanks. The incorporation of MVDR

into guided wave imaging algorithms, combined with the ability to adaptively estimate

and compensate for guided wave propagation parameters, such as dispersion and compos-

ite transducer transfer functions, represents a significant contribution to the establishment

of guided wave imaging as an economical method for long term monitoring of plate-like

structures.

The incorporation of MVDR into conventional delay-and-sum imaging was introduced

in Chapter IV along with three additional methods to improve imaging performance: use

of expected scattering behavior, phase information, and instantaneous windowing. Instan-

taneous windowing was also shown to allow a re-formulation of the imaging algorithm

that does not require a matrix inversion operation, significantly reducing computational

requirements to the same order of magnitude as conventional imaging and allowing for

vectorization of the problem, further improving computational efficiency. The proposed

imaging algorithm and performance enhancement techniques were shown to significantly

improve imaging performance with both simulated and experimental data, as indicated by

a quantitative error metric.

A model-based parameter estimation (MBPE) algorithm was also developed and pre-

sented in Chapter V to adaptively estimate dispersion, transducer-specific transfer func-

tions, transducer spacings, and propagation loss. Parameter estimation results from an in
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situ sensor array were obtained from experimental data and compared to nominal values. In

addition, measured signals were approximated with the parameter estimates, demonstrating

that the assumed propagation model is capable of accurately describing the experimental

data.

The adaptively estimated propagation parameters were incorporated into the ω–k map-

ping algorithm to perform adaptive dispersion compensation. Chapter VI investigated the

benefits and challenges of performing dispersion compensation either before or after base-

line subtraction, and quantified the impact that adaptive dispersion compensation has on

guided wave imaging results.

Chapter VII presented a method to characterize the performance of a sparse, distributed

array. A performance metric was established to quantify the ability of an array to identify

damage throughout the entire interrogation structure. The imaging algorithm employed,

excitation function, number of sensors, sensor arrangement, array aperture, and array loca-

tion were all evaluated. For the aluminum plate used throughout this work and a point-like

defect, the imaging algorithm, excitation function, and array aperture size were demon-

strated to have the three largest impacts on overall performance.

Finally, a method to perform damage characterization was proposed in Chapter VII. The

algorithm takes advantage of the sensitivity of minimum variance imaging to characterize

defects or damage. Damage characterization, in the form of determining the orientation

of a notch, was performed with experimental data for two different notch locations and

orientations.

8.1 Conclusions

Several conclusions can be made from this work. First, the benefits of minimum variance

imaging far exceed the minor additional computational demands. As such, there is lit-

tle reason not to use minimum variance imaging in place of conventional delay-and-sum

imaging.
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Second, progressive improvements in guided wave imaging performance were demon-

strated by incorporating scattering information, deconvolving the transducer transfer func-

tions, and compensating for dispersion. Therefore, further guided wave imaging improve-

ments can be reasonably be expected by the continued incorporation of accurate additional

information.

Although parameter compensation can be performed prior to baseline subtraction, the

baseline subtraction problem is ill-conditioned and extremely sensitive to errors in the pa-

rameter estimates. It was shown to work with simulation data, but due to the number of

additional assumptions required, is not likely to be practical. In contrast, parameter com-

pensation after baseline subtraction has been shown to be capable of producing noticeable

imaging improvements without hypersensitivity to errors. Therefore, parameter compen-

sation should be performed after baseline subtraction and the use of baseline subtraction

algorithms like OBS and BSS.

Finally, identification of an optimal array configuration is a non-trivial task. The perfor-

mance of an array is dependent on a large number of variables, including the interrogation

structure, excitation function, and imaging algorithm. From the initial investigation pre-

sented in Chapter VII, it is highly unlikely that any arrangement of sensors will allow con-

ventional imaging to out-perform minimum variance imaging. Similarly, the time- and/or

spatial-support of the excitation function plays an equally strong role in performance. As

the excitation function becomes more compact in time, however, the bandwidth of the sig-

nal increases, which in turn increases the effects of dispersion. These competing effects

underscore the need for adaptive parameter estimation and dispersion compensation.

8.2 Contributions

The primary contributions of this work are (1) the adaptation of the MVDR algorithm to

in situ guided wave imaging algorithms, (2) the development of a model-based algorithm

for adaptively estimating wave propagation parameters with minimal a priori information,
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(3) the incorporation of these adaptively estimated parameters into guided wave imaging

algorithms through the ω–k mapping algorithm, (4) a methodology for quantitatively char-

acterizing the ability of an array to detect and locate damage throughout a structure, and (5)

a methodology for characterizing defects or damage using guided waves generated from a

spatially distributed array.

Incorporation of MVDR into the conventional imaging algorithm was quantitatively

shown to provide significant imaging improvement with minimal additional computational

complexity. In addition, by reformulating the elliptical guided wave imaging algorithm

into a multi-channel estimation problem, a wide range of covariance techniques can now

be applied.

Although used exclusively to characterize ultrasonic guided waves in this text, the

MBPE algorithm allows any system incorporating acoustic, electromagnetic, or elastic

waves to characterize dispersion curves, propagation loss, propagation distances, as well as

transmitter and receiver transfer functions in situ at the time of test, thereby avoiding poten-

tially erroneous a priori assumptions. At this time, the MBPE algorithm is the only method

available to simultaneously obtain all of these parameters with in situ measurements and

minimal a priori assumptions.

The incorporation of MBPE parameter estimates into the ω–k mapping algorithm pro-

vides a powerful tool to leverage the adaptive parameter estimates for the benefit of guided

wave imaging applications. The use of distance domain signals for sparse, distributed ar-

ray imaging has been shown to be a computationally efficient method to perform dispersion

compensation with adaptively estimated parameters.

Since imaging artifacts are an inherent part of guided wave imaging algorithms, the

geometry of the structure under consideration is a key factor in array performance. The

imaging performance of a specific sparse, distributed array configuration can now be quan-

titatively characterized for a specific structure using the methodology presented in Chapter

VII. This initial investigation into array configurations identified the significance of the
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imaging algorithm, excitation function, and array aperture size.

The ability to characterize defects or damage with a sparse, distributed array repre-

sents a new capability for SHM systems and is made possible through the use of minimum

variance imaging. Since remaining useful life and stress state are directly related to fa-

tigue crack size, damage characterization is an important step towards the use of ultrasonic

guided waves for condition-based maintenance.

8.3 Future Work

The work performed to date has created a solid theoretical basis for adaptive parameter

estimation and minimum variance imaging. However, a considerable amount of work re-

mains if ultrasonic guided wave imaging is ever to become a feasible alternative to current

in-service NDE inspections.

First, now that both MPBE and minimum variance imaging have been successfully

demonstrated experimentally in the laboratory, it is crucial to apply both algorithms to more

realistic, and therefore both larger and more complex, structures. Regardless of how real-

istic the interrogation structure is, it is important that the size and complexity be increased

simultaneously. Small laboratory experiments of complex structures present an unrealisti-

cally challenging environment because of the excessive amplitude and quantity of echoes

from boundary reflections. As such, future experiments should be careful to increase both

the size of the interrogation structure in addition to increasing complexity.

The work presented here has demonstrated a significantly improved ability to detect,

locate, and characterize defects such as through-holes and/or notches. It is important, how-

ever, for a similar ability to be demonstrated with more practical defect and damage types,

such as fatigue cracks, missing fasteners, corrosion, etc.

Finally, it appears that one of the major remaining hurdles for the widespread adop-

tion of ultrasonic guided wave imaging is the establishment of quantitative probability

of detection (POD) and probability of false alarm (PFA) metrics. Although the method
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demonstrated in Chapter VII represents a first step in this direction, such an analysis is

very difficult and appears to only be possible with a simulation of the structure for every

possible damage type and location. Until POD and PFA can be quantified, however, SHM

is unlikely to be adopted for long-term monitoring of structures that affect the health and

safety of human life.
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APPENDIX A

REQUIRED SAMPLES FOR MBPE

This appendix derives (5.5), which presents a lower bound for the number of samples re-

quired to perform MBPE. Group velocity and receiver distance estimation is based on mea-

sured differences in the phase-response of each received signal. The phase-response of a

single-mode direct arrival is described as in (5.4b):

�M (ω) = �T (ω) + �R (ω) − k (ω) d + 2πb. (A.1)

The challenges associated with the modulo nature of the phase information can be ad-

dressed through the use of an unwrapped phase-response. As discussed in Section 5.1, an

assumption must be made that the maximum angular change between two adjacent fre-

quencies of each received signal is less than π. Ignoring the impact of noise, the angular

change between two adjacent frequencies of a Fast Fourier Transform (FFT) is obtained

from (A.1) as:(
∂

∂ω
�M (ω)

)
Δω =

(
∂

∂ω
�T (ω) +

∂

∂ω
�R (ω) − d

∂

∂ω
k (ω)

)
Δω,

=

(
∂

∂ω
�T (ω) +

∂

∂ω
�R (ω) − d

cg (ω)

)
Δω, (A.2)

where Δω is the spacing between FFT frequency bins and cg (ω) is the group velocity,

defined as ∂ω/∂k (ω) in (3.2). The impact of noise on the phase-response is related to the

SNR for that specific frequency, Q (ω). The maximum angular deviation in phase for a

specific frequency due to noise with magnitude |N| is

Δθ (ω) = sin−1

( |N|
|M (ω)|

)
= sin−1

(
1

Q (ω)

)
(A.3)

For the angular change between frequencies to be less than π for any ω, the angular change

between two adjacent frequencies due to the signal, (A.2), and twice the maximum angular
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deviation that is possible from either bin due to noise, (A.3) must sum to less than π:

2 sin−1

(
1

Qmin

)
+

∣∣∣∣∣ ∂∂ω�T (ω) +
∂

∂ω
�R (ω) − dmax

cmin

∣∣∣∣∣Δω < π (A.4)

Here, the minimum SNR of any frequency, Qmin, the maximum distance between transmit-

ter and any receiver, dmax, and the minimum group velocity for any propagating mode at

any excited frequency, cmin, are used to preserve the inequality and extend the bound to any

receiver, propagating mode, and excited frequency. Note that for many cases, including the

case described here, the derivative of the transmitter and receiver phase-responses in (A.4)

can be safely ignored because they will be much smaller than the dmax/cmin term. Substi-

tuting Δω = 2πFs/nn where Fs is the sampling frequency and nn is the number of samples,

(A.4) can be rearranged as:

nn >
2πFsdmax

cmin

[
π − 2 sin−1

(
1

Qmin

)] , (A.5)

which is presented in (5.5). Note that the number of samples can be increased to nn or

greater by padding the direct arrival signals with zeros and, thus, does not translate to any

operational system requirements.
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APPENDIX B

PROXIMITY OF κ OFFSET VALUES FOR MBPE

It is possible to establish a lower-bound on the ambiguity of κ. To begin, let κ be re-defined

as a summation of the actual or true value, κ̂, and some error, κδ:

κ = κ̂ + κδ. (B.1)

Also, redefine the all-integer vector, �b, similarly:

�b = b̂
=

A +
�bδ, (B.2)

where b̂
=

A corresponds to the true all-integer vector and �bδ is an all-integer error term.

Finally, recall the system of linear equations used to model the phase response of the mea-

sured direct arrivals from (5.10):

MI = QTTΔ +Qτ�τ �1
T

w +QRRΔ +Qρ�ρ �1
T

w − �d �k
T

Δ − κ�d �1
T

w + 2π�b �1
T

w . (B.3)

The ambiguity of κ arises from the fact that the system of linear equations in (B.3)

describe the received signals, MI, equally well when �d κδ is an all integer vector. Mathe-

matically, this is equivalent to:

�d κδ = 2π�bδ. (B.4)

Let α be scalar value such that α�d is an all-integer vector. Then the smallest value of κδ

that satisfies (B.4), κmin, must satisfy:

κmin =
2πα

gcd
(
α�d

) . (B.5)

Here gcd (·) represents the greatest common denominator for all vector elements within the

parentheses.
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Since there are some uncertainties in receiver distances, both due to measurement un-

certainty and the finite size of the transducers, a path accuracy is defined as

dδ = 10��log10(2dt)��, (B.6)

where dt is the uncertainty of the effective transducer location and ��·�� represents the ceiling

function. Let �dm be the measured (nominal) distance vector. Given the uncertainty in

distance measurement indicated by dδ, it is possible that �dm/dδ is very close to an all-integer

vector. Therefore, (B.5) can be modified to bound κmin:

κmin ≥ 2π

dδgcd
(
[[ 1

dδ
�dm]]

) . (B.7)

As dδ → 0, κmin approaches a stable value.
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