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Abstract—Guided wave imaging techniques employed for structural
health monitoring (SHM) can be computationally demanding, especially
for adaptive techniques such as minimum variance distortionless response
(MVDR) imaging, which requires a matrix inversion for each pixel
calculation. Instantaneous windowing has been shown in previous work
to improve guided wave imaging performance. The use of instantaneous
windowing has the additional benefit of significantly reducing the compu-
tational requirements of image generation. This paper derives a formula-
tion for MVDR imaging using instantaneous windowing and shows that
the matrix inversion associated with MVDR imaging can be optimized,
reducing the computational complexity to that of conventional delay-and-
sum imaging algorithms. Additionally, a vectorized approach is presented
for implementing guided wave imaging algorithms, including delay-and-
sum imaging, in matrix-based software packages. The improvements in
computational efficiency are quantified by measuring computation time
for different array sizes, windowing assumptions, and imaging methods.

Index Terms—minimum variance, MVDR, instantaneous windowing.

I. INTRODUCTION

Guided wave imaging techniques are used in structural health
monitoring (SHM) applications to perform damage detection and
localization in large, plate-like structures. These techniques have been
applied to distributed sparse arrays, where sensors are permanently
attached throughout the structure to provide a cost-effective alter-
native to traditional bulk wave inspection. While most laboratory
experiments using distributed sparse arrays are sufficiently small so as
to sidestep the issue of computational complexity, the implementation
costs and time sensitivity of large, realistic systems can be impacted
by the computational demands of guided wave imaging algorithms.

Conventional delay-and-sum imaging algorithms, also known as
elliptical imaging algorithms [1], [2], establish pixel values based on
the weighted sum of signals within a specific time window. Recent
work by the authors [3] has indicated that because guided wave
SHM systems are able to reduce noise levels by signal averaging,
imaging performance is maximized when the time window is reduced
to an instantaneous point in time. In addition to improving imaging
performance, however, instantaneous windowing also reduces the
computational demands for imaging.

Minimum variance distortionless response (MVDR) [4], [5] has
recently been incorporated into conventional delay-and-sum imaging
to adaptively reduce the presence of imaging artifacts [3], [6],
[7]. While this adaptive technique, referred to as MVDR imaging,
improves performance significantly, the performance improvements
come at the cost of higher computational demands. For large arrays,
the increase in computational requirements and associated increase
in implementation cost may outweigh the benefits in imaging perfor-
mance.
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When instantaneous windowing is used, however, the computa-
tional demands of MVDR imaging can be reduced to the same
order of magnitude as conventional delay-and-sum imaging. The
technique to enable this reduction is presented in this paper and
the improvement in computation time is shown as a function of the
number of transducers used.

Another significant impact on the computation time of guided
wave imaging algorithms is related to the software package used for
imaging. Many numerical analysis software packages are tailored for
operation with matrices, such as MATLAB R© by The Mathworks [8],
[9], GNU Octave [10], and SciLab [11]. As such, computation time
is reduced when the imaging algorithm is implemented as a series of
matrix operations. This paper presents a vectorization method to tailor
the delay-and-sum and MVDR imaging algorithms to matrix-oriented
software programs and demonstrates the impact that vectorization has
on computation time.

This paper is organized as follows. First, the delay-and-sum
imaging algorithm is presented and is formulated for the case of
instantaneous windowing. MVDR imaging is then similarly presented
and reformulated. Next, both imaging algorithms are presented in vec-
torized format for efficient implementation in matrix-based software
packages. Finally, results are presented and a summary is provided.

II. GUIDED WAVE IMAGING

Both conventional delay-and-sum and MVDR imaging, as im-
plemented here for SHM, generate an image based on differenced
signals. Differenced signals are obtained by subtracting damage-
free baseline signals from signals recorded at the time of test. The
differencing operation isolates energy that is scattered from defects
in the structure. The differenced signals may be handled as raw
(RF) differenced signals, complex analytic signals, or the envelope of
the analytic signals. The relative computational demands illustrated
in this paper are independent of the data format chosen and are
applicable to any of the above cases.

To simplify comparisons, a minimally dispersive propagating en-
vironment is assumed in which backpropagation corresponds to a
simple time-shift. This assumption is reasonable for narrow-band
signals in frequency ranges with little dispersion [2], [3].

A. Delay-and-Sum Imaging

This section first introduces the delay-and-sum imaging algorithm
in the context of how each pixel is generated, and then simplifies the
algorithm under instantaneous windowing assumptions for compari-
son with MVDR imaging in the following section.

1) General Approach: As shown in Hall and Michaels [3], the
pixel value for delay and sum imaging is described as:

PDS = �wHDSR�wDS, (1)

where R is a correlation matrix of the backpropagated, differenced
signals, the �wDS vector is a unit-norm vector chosen to maximize the
pixel value if damage is present, and the superscript “H” indicates
the Hermetian transpose of a matrix or vector. The correlation matrix
is calculated as:

R =

t2∑
t=t1

−→r (t)−→r H (t), (2)

where the elements of the �r(t) vector correspond to the backpropa-
gated, differenced signals:

−→r (t) =
[
r1

(
t+ d1

cg

)
· · · rM

(
t+ dM

cg

) ]T
. (3)

In the above equation, cg is the propagation velocity, rm(t) is the
differenced signal for the mth transmitter-receiver pair, dm is the
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propagation distance from transmitter to pixel location to receiver
for the mth transmitter-receiver pair, and M is the number of pairs.

To maximize the pixel value at a damage location, the �wDS
vector must reflect the relationship between signals. If damage is
present, then the transmitted signal propagates from the transmitter
to the pixel location and interacts with the defect. A scattered signal
then propagates from the pixel location to the receiver. Therefore,
the relationship between signals is based on the expected scattering
characteristics of the damage and the product of the propagation
distances:

�wDS ∼
[

ψ1√
d×
1

· · · ψM√
d×
M

]T
, (4)

where ψm quantifies the scattering behavior of potential damage
and d×m is the product of the propagation distances from transmitter
to pixel location and from pixel location to receiver for the mth

transmitter-receiver pair. The square root of the distance product
accounts for the geometric spreading of the signal.

2) Instantaneous Windowing: When instantaneous windowing is
used, the summation interval in (2) is reduced to a single point in
time, τ . In other words,

R = −→r (τ )−→r H (τ ) , (5)

where τ is a time reference that corresponds to the maximum
amplitude of the transmitted signal. When the correlation matrix is
reduced to the form of (5), the pixel value calculation is similarly
reduced to:

PDS =
∣∣−→r H (τ )−→wDS

∣∣2 . (6)

From (6), the computational complexity for calculating a single pixel
value is O(M), where M is the number of transmitter-receiver pairs
used for imaging.

B. MVDR Imaging

MVDR imaging is briefly presented in this section. Refer to
previous work by the authors [3] for a more thorough treatment of
MVDR imaging, including a derivation of the algorithm and discus-
sion of associated implementation issues and expected performance
improvements. As in the previous section, after introducing MVDR
imaging, the algorithm is reformulated for instantaneous windowing.

1) General Approach: Similar to (1), the pixel values for MVDR
imaging are calculated as:

PMV = �wHMVR�wMV . (7)

However, the �wMV vector in MVDR imaging is chosen to minimize
the pixel value subject to a constraint that preserves pixel values at
damage locations. The �wMV vector is chosen to satisfy the following
constrained optimization problem:

�wMV = argmin
−→w

−→w TR−→w such that −→wH−→e = 1. (8)

Here �e is a unit-norm vector referred to as the steering vector, or look
direction. For MVDR imaging, the �e vector reflects the anticipated
relationship between signals if damage is present at the pixel location.
Therefore, �e is identical to �wDS for conventional delay-and-sum
imaging (see (4)). The solution to (8) is found using Lagrange
multipliers:

�wMV =
R−1−→e

−→e HR−1−→e . (9)

The above equation indicates that a matrix inversion is required
to calculate each pixel value. The matrix inversion operation is
responsible for the bulk of the computational complexity of MVDR
imaging. Assuming that Gauss-Jordan elimination is used for the
matrix inversion, the computational complexity of obtaining each
pixel value is O(M3) [12].

2) Instantaneous Windowing: When instantaneous windowing is
used, the correlation matrix, R, takes on a known structure. The
eigendecomposition, or spectral decomposition, for R is simply:

R = −→r (τ )−→r H (τ ) = λ−→v −→v H (10)

where λ = ‖�r (τ )‖2 and �v = �r (τ ) / ‖�r (τ )‖.
Clearly, the correlation matrix is not full rank when instantaneous

windowing is used. In Hall and Michaels [3], diagonal loading is ap-
plied to the correlation matrix prior to inversion. The diagonal loading
is chosen to be some factor, f , of the largest eigenvalue, which is λ
for the instantaneous case considered here. The eigendecomposition
of a diagonally loaded instantaneous correlation matrix is:

R̂ = �r (τ )�rH (τ ) + fλI

= (1 + f)λ�v�vH + fλNNH , (11)

where I is an M × M identity matrix and N is a set of M − 1
orthonormal vectors spanning the null space of �v. Using the structure
of R̂ in (11), the inverse of R̂ is:

R̂−1 =
1

(1 + f)λ
�v�vH +

1

fλ
NNH . (12)

Substituting (12) into (9), the optimal weights that satisfy (8) can be
expressed as:

−→wMV =

�vH�e
(1+f)λ

�v + 1
fλ

NNH�e

|�vH�e|2
(1+f)λ

+ n2

fλ

, (13)

where

n2 = �eHNNH�e. (14)

Since N is a set of orthonormal vectors, NHN = I. Therefore,
(14) is equivalently:

n2 = �eHNNHNN
H
�e =

∥∥NNH�e
∥∥2
. (15)

From (15), n2 is the squared-norm of the projection of �e onto the
null-space of �v. Therefore, n2 can be calculated directly from �e and
�v as:

n2 =
∥∥(I−−→v −→v H

)−→e ∥∥2
=
∥∥−→e −

(−→v H−→e
)−→v ∥∥2

. (16)

Substituting (13) into (7) and collecting terms yields

PMV =
λ
∣∣−→v H−→e

∣∣2(
|−→v H−→e |2 + n2 1+f

f

)2 , (17)

since NHR = 0. The above formulation, along with (16), indicates
that instantaneous windowing allows each pixel value to be computed
without the need to explicitly calculate the correlation matrix, the as-
sociated eigenvalues, or a regularized matrix inversion for each pixel.
The computational complexity for a single MVDR pixel calculated as
in (17) is O(M), which represents a significant improvement over the
more general finite window case of O(M3) and is comparable to the
computational requirements of conventional delay-and-sum imaging.

C. Vectorization

The method employed to implement guided wave imaging in
matrix-based software packages such as MATLAB R© has a dramatic
impact on computation time because of the software package’s
internal structure. It is well-known that matrix-based software pack-
ages perform more efficiently with vectorized data [8], [9]. This
section constructs the guided wave imaging algorithms discussed
in the previous sections in vectorized format to aid the reader in
vectorization of this specific problem.
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It is important to note that throughout this section, all matrix
operations are performed element-wise. The nature of the problem
does not lend itself to traditional row-column matrix multiplications;
rather the matrix structure is employed here to better adapt the
problem to the software tool. Also, although the convention in this
section is to use two-dimensional (2-D) matrices to store pixel-
specific data, the dimensionality of the problem can be further
reduced to store the 2-D matrices in a 1-D array. The current format
was chosen over the alternative for readability purposes and is not
expected to have a noticeable impact on computational requirements.

Let X and Y be matrices of x- and y-coordinates, respectively,
for each pixel location:

X =

⎡
⎢⎣
x0 x1 · · ·
...

...
...

x0 x1 · · ·

⎤
⎥⎦ ,Y =

⎡
⎢⎣
y0 · · · y0
y1 · · · y1
... · · ·

...

⎤
⎥⎦ . (18)

Then M separate 2-D matrices are generated that correspond to the
distance from transmitter to pixel location, D̂m, and pixel location
to receiver, Ďm:

D̂m =

√(
X− xt(m)

)2
+
(
Y − yt(m)

)2
(19)

Ďm =

√(
X− xr(m)

)2
+
(
Y − yr(m)

)2
, (20)

where xt(m), yt(m), xr(m), and yr(m) correspond to the x- and y-
coordinates of the transmitter and receiver for the mth transmitter-
receiver pair.

The instantaneous windowing assumption allows the backpropa-
gated signals to be obtained simply by selecting a single time sample
from the differenced signals:

Bm = rm

(
τ +

D̂m + Ďm

cg

)
. (21)

Here a 2-D matrix, Bm, is constructed in which each element of Bm
corresponds to a specific time in rm (t) defined by the argument in
(21). Note that if a sufficiently high sampling rate is used so that
interpolation in the time domain is unnecessary, the argument in (21)
can be multiplied by the sampling frequency and rounded to the
nearest integer to obtain the desired sample index.

From (21), if the M 2-D matrices are stacked in a third dimension,
then �r (τ ) for each pixel value is stored along the third dimension.
An identical structure is used for the �e and �v vectors.

The 3-D matrix of �e vectors for MVDR imaging (or �wDS vector
for conventional delay-and-sum imaging) is determined as in (4). To
begin, the unnormalized vectors are calculated:

Fm =
Ψm√
D̂mĎm

, (22)

where Ψm is a matrix of pixel-specific scattering coefficients for the
mth transmitter-receiver pair. The pixel specific norm is then obtained,

‖F‖ =

√∑
m

|Fm|2, (23)

and finally the pixel-specific vectors are normalized,

Em =
Fm
‖F‖ . (24)

The conventional delay-and-sum image is generated as

PDS =

∣∣∣∣∣
∑
m

B∗
mEm

∣∣∣∣∣
2

, (25)

where ∗ is the element-wise complex conjugate operation.

To calculate the pixel values for an MVDR image, a 2-D matrix
of λ values is calculated:

Λ =
∑
m

|Bm|2. (26)

The Λ matrix is then used to obtain the eigenvectors:

Vm =
Bm√
Λ
. (27)

For convenience, two intermediate matrices are calculated:

P =
∑
m

V∗
mEm (28)

S =
∑
m

|Em −PVm|2 (29)

which correspond to the �vH�e and n2 terms, respectively for the
single-pixel case in (17). Finally, the MVDR pixel value is calculated
using element-wise matrix operations:

PMV =
Λ |P|2∣∣|P|2 +
(
1+f
f

)
S
∣∣2 . (30)

Equations (25) and (30) reflect the vectorized conventional delay-and-
sum and MVDR imaging algorithms, respectively, with instantaneous
windowing. Note that complete vectorization of the MVDR imag-
ing algorithm is not possible without the instantaneous windowing
optimization presented in Section II-B2. Vectorization is expected
to reduce the computation time required for image generation when
using matrix-oriented numerical analysis software.

III. COMPUTATIONAL RESULTS

Simulation data were used to verify the computational complexity
of the proposed methods above. Guided wave images were generated
using 2 to 24 transducers for five separate cases: (1) MVDR imaging
with traditional matrix inversion computed with for-loops, (2) MVDR
imaging optimized for instantaneous windowing computed with for-
loops, (3) MVDR imaging optimized for instantaneous windowing
and computed with vectorized data, (4) conventional delay-and-
sum imaging computed with for-loops, and (5) conventional delay-
and-sum imaging computed with vectorized data. For comparison
purposes, all images were created using instantaneous windowing,
meaning that the correlation matrix (if calculated) is constructed as
in (5). Mathworks’ MATLAB R© was used to generate the images
using a Hewlett-Packard laptop with an Intel R© CoreTM2 Duo CPU
operating at 2.26 GHz with 4 GB of RAM and running Windows R©
Vista Home Premium. Each image was composed of 7744 pixels,
corresponding to a 610 x 610 mm plate imaged with pixels spaced
7 mm apart. Images were each generated 20 separate times and the
average computation time was recorded.

Figure 1 depicts computation time as a function of the number of
transducers. Several features of Figure 1 are worth noting. First, the
optimization for MVDR imaging presented in Section II-B2 signif-
icantly reduces the computational requirements of MVDR imaging
(broken lines) to the point that it can be performed in a comparable
amount of time as conventional delay-and-sum imaging (solid lines).
As mentioned earlier, matrix inversion requires O

(
M3

)
operations,

which is compounded by the fact that if N transducers are used for
imaging, the number of pairs of transducers, M = N (N − 1) /2. As
a result, the computation time for MVDR imaging without optimiza-
tion grows much faster than any of the other cases as the number
of transducers is increased. In contrast, the computation time for
MVDR imaging optimized for instantaneous windowing is a constant
multiple of the computation time required for conventional delay-
and-sum imaging. Another important observation is that, as expected,
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Fig. 1. Computation time vs. number of transducers for five separate cases:
(1) MVDR imaging with traditional matrix inversion computed with for-loops,
(2) MVDR imaging optimized for instantaneous windowing computed with
for-loops, (3) MVDR imaging optimized for instantaneous windowing and
computed with vectorized data, (4) conventional delay-and-sum imaging com-
puted with for-loops, and (5) conventional delay-and-sum imaging computed
with vectorized data.

vectorizing the imaging algorithms further reduces computation time.
The initial offset in computation time between images generated with
for-loops vs. vectorized data is attributed to overhead costs from setup
of the for-loop operation. As the number of transducers is increased,
the difference in computation time is expected to continue to decrease
because the overhead associated with for-loop operation becomes
small compared to image computational requirements.

IV. SUMMARY

This paper demonstrates that (1) when instantaneous windowing is
used, the computational demands for MVDR imaging are comparable
to those of conventional delay-and-sum imaging, and (2) vectorizing
the imaging algorithm can have a significant impact on computa-
tion time. Both conventional delay-and-sum imaging and MVDR
imaging algorithms are presented and reformulated for the case
when instantaneous windowing is used. Both imaging algorithms are
then vectorized for efficient implementation in matrix-based software
packages, such as MATLAB R© by The Mathworks. Computational
improvements are demonstrated by showing the computation time of
each algorithm as a function of the number of transducers used for
imaging.

The primary contributions of this paper include identifying and
quantifying the computational improvements that are obtained by
(1) using instantaneous windowing, and (2) tailoring the imag-
ing problem for matrix-based software packages. The reduction
in computational demands obtained from instantaneous windowing
optimization enables the use of MVDR imaging, with its associated
benefits in imaging performance, at computational costs comparable
to conventional delay-and-sum imaging.
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