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Abstract—Ultrasonic guided wave imaging with a sparse, or spatially distributed, array can detect and 
localize damage over large areas.  Conventional delay-and-sum images from such an array typically have a 
relatively high noise floor, however, and contain artifacts that often cannot be discriminated from damage.  
Considered here is minimum variance distortionless response (MVDR) imaging, which is a variation of delay-
and-sum imaging, whereby weighting coefficients are adaptively computed at each pixel location.  Utilization 
of MVDR significantly improves image quality compared to delay-and-sum imaging, and  additional 
improvements are obtained from incorporation of a priori scattering information in the MVDR method, use 
of phase information, and instantaneous windowing.  Simulated data from a through-hole scatterer are used 
to illustrate performance improvements, and a performance metric is proposed that allows for quantitative 
comparisons of images from a known scatterer.  Experimental results from a through-hole scatterer are also 
provided that illustrate imaging efficacy. 
 

Index Terms—ultrasonics, Lamb waves, sparse array, nondestructive evaluation, structural health 
monitoring, imaging, beamforming, sidelobe reduction, artifact reduction, minimum variance, Capon’s 
method, phase information 

 
I. INTRODUCTION 

Guided waves play a key role in proposed and 
existing methods for structural health monitoring (SHM) 
and nondestructive evaluation (NDE).  They allow large 
plate-like structures, such as aircraft skins, ship hulls, and 
large storage tank walls, to be interrogated for surface and 
subsurface defects since the waves are able to propagate 
over long distances with reduced geometric losses 
compared to bulk wave propagation [1].  However, the 
long distances traveled complicate damage detection and 
localization efforts because the received ultrasonic signals 
invariably contain multiple overlapping reflections from 
boundaries and internal geometric reflectors.   These 
overlapping reflections appear in images generated from 
guided waves as artifacts that are often indistinguishable 

from actual damage.  This paper builds upon previous 
work by the authors [2, 3], in which the use of Minimum 
Variance Distortionless Response (MVDR) [4] 
beamforming, also known as Capon’s Method [5], is 
employed to minimize these artifacts.  In addition, 
scattering fields, phase information, and time-domain 
windowing are used in conjunction with MVDR to further 
improve image quality.  This work is presented in the 
context of Lamb wave propagation between spatially 
distributed array elements, where the interrogation area is 
located in the near-field of the array aperture, although it is 
also applicable to compact array geometries for both bulk 
and guided waves.  As such, this paper compliments that 
by Velichko and Wilcox [6], which focuses on imaging 
with compact linear and circular arrays under far-field 
plane wave assumptions. 
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The paper is organized as follows:  Section II 
provides a brief background on guided wave imaging.  
Section III reviews conventional delay-and-sum imaging 
and proposes an imaging performance metric.  Section IV 
introduces MVDR imaging and discusses additional 
techniques for image improvement.  Section V discusses 
MVDR imaging in the context of NDE and SHM system 
concerns.  Section VI presents experimental results, and 
Section VII contains the concluding remarks. 

II. BACKGROUND 

One underlying assumption common to all 
imaging techniques is that damage perturbs incident 
waves.  To take advantage of changes in received signals 
resulting from the damage, guided wave imaging 
algorithms often use differenced information, meaning that 
baseline signals recorded prior to the introduction of any 
damage are subtracted from the current, or in-service, 
signals.   The simple task of baseline subtraction has a 
number of challenges associated with it.  Environmental 
changes can cause the received signals to change, even 
without the presence of damage.  Wilcox et al. [7, 8] 
quantified the impact of baseline mismatch due to 
temperature changes and related this to a system’s 
sensitivity to damage.  Lu and Michaels [9] and 
Konstantinidis et al. [10] both addressed the problem of 
baseline subtraction by recording multiple baseline signals 
and using the baseline that resulted in the smallest 
residual; this signal is often referred to as the optimal 
baseline.  Lu and Michaels [9] built upon this idea of 
optimal baseline subtraction by applying a stretch 
algorithm to the optimal baseline, further reducing residual 
signals.  More recent work has further demonstrated 
compensation for near-homogeneous temperature changes 
[11-13].  Guided wave tomography, first suggested by 
Jansen [14] in 1990, is one of the earliest guided wave 
imaging techniques.  Tomographic systems typically rely 
on either time-of-flight or amplitude information to 
generate an image located within a polygon bounding the 
ultrasonic transducers.  A review of ultrasonic guided 
wave tomography is provided by Hay et al. [15]. More 
recently, Gao et al. [16] have proposed a tomographic-like 
algorithm that spatially distributes changes in guided wave 
signals between various transducer pairs. One of the 
limitations of these tomographic techniques is that a 
relatively large number of transducers around the 

perimeter of the imaging area is required to obtain a useful 
image.  For commercial viability, it is desirable to 
minimize the number of transducers required to produce 
images for damage localization. 

Sparse (i.e., spatially distributed) arrays of 
ultrasonic transducers have been proposed as a cost-
effective means of integrating guided wave-based SHM 
and NDE methods into commercial and industrial 
applications.  In 2004, Wang et al. [17] introduced a 
method for guided wave imaging that is applicable to 
sparse arrays.  The technique was presented in the context 
of synthetic time-reversal but is typically referred to either 
as delay-and-sum imaging or the ellipse method.  In this 
approach, each pixel value is based on the summation of 
the received signals at different points in time.  The 
specific times are a function of the total distance from 
transmitter, to pixel location, to receiver.  The ellipse 
nomenclature is derived from the fact that the locus of a 
constant time curve is an ellipse.  Note that Wang et al. 
formulated the summation with weighting coefficients, but 
used uniform weights and did not discuss other choices of 
weighting coefficients.  Michaels and Michaels [18] 
expanded the approach of Wang et al. to sum the signals 
over a time window of data, as opposed to a single point in 
time, establishing the pixel value as the energy contained 
within the resulting summed signal.  Michaels et al. [19] 
later demonstrated improved imaging performance by 
applying an exponential window to each received signal 
beginning at the time of the direct arrival.  Finally, 
Michaels and Michaels [20] showed that images generated 
from different frequency excitation signals could be fused 
to obtain higher-quality images.  

Another technique has recently been introduced, 
the hyperbola algorithm [19, 21],  which applies the delay-
and-sum approach to cross-correlations between baseline 
subtracted signals.  The hyperbola nomenclature is used 
because the locus of constant time differences between the 
same arrival at two receivers is a hyperbola.  Because this 
method groups receivers in pairs with a third transmitting 
transducer to obtain cross-correlation information, there is 
a much larger number of contributing signals for imaging 
as compared to the ellipse algorithm.  Although some of 
the techniques discussed here may be applicable to 
imaging with the hyperbola algorithm, the scope of this 
paper is focused on ellipse techniques using multiple 
transmit-receive pairs. 
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One additional challenge associated with guided 
wave imaging is geometric dispersion, meaning that the 
propagation speed of Lamb waves is frequency-dependent 
[22].  As such, signals spread in time as they propagate 
and thus decrease in amplitude [23].  The spreading of the 
signals is also accompanied by a change in phase.  The 
phase change adversely impacts both the ellipse and 
hyperbola algorithms, which inherently assume that the 
scattered signals received at each transducer are in-phase.  
One common solution is to use the envelope of the 
differenced signals [24], which is the absolute value of the 
analytic representation of the signal.  Some of the costs 
and benefits of using envelope vs. RF signals were 
identified by Wilcox et al. [25].  Alternatively, the 
dispersive nature of the waves can be addressed by 
dispersion compensation directly in the frequency domain 
as demonstrated by Sicard et al. [26], or by converting the 
time-domain signals to the spatial domain, as performed 
by Wilcox [27, 28]. 

III. DELAY-AND-SUM IMAGING 

Consider the case of a homogeneous, isotropic 
plate with N identical transducers, such as in Fig. 1 where 
N = 6.  Although six transducers allow for N(N−1) = 30 
different combinations, only one signal from each unique 
transmitter-receiver pair needs to be used, resulting in 15 
signals.  The two diagrams in Fig. 1 show the propagation 
paths for three of the 15 transmitter-receiver pairs.  Figure 
1(a) depicts the paths for location (a,b) and Figure 1(b) 
depicts the corresponding paths for location (c,d).  It is 

assumed that perfect baseline subtraction is achieved, 
resulting in differenced signals comprising only the 
scattered field from the damage. 

We first consider the case whereby the envelopes 
of the scattered signals are used for imaging.  The 
envelope is obtained by taking the absolute value of the 
analytic representation of the scattered signal: 

( ) ( ) ( )ENV ,ijij ijr t s t js t= +   (1) 

where sij(t) is the RF scattered signal generated by 
transmitting from the ith transducer and receiving at the jth 
transducer, ( )ijs t  is the Hilbert transform of the RF 

scattered field, j is the square root of −1, and ( )ENV
ijr t  is 

the envelope signal.  
Combining the imaging concepts of Wang et al. 

[17]  and Michaels and Michaels [18], pixel values for 
delay-and-sum imaging are defined as: 

( )
2

1

,
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d ,
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−
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where w(t) is a windowing function, dixy is the distance 
from the ith transducer to the pixel location (x,y), cg is the 
group velocity, and eijxy is a weighting coefficient specific 
to the pixel location and transmitter-receiver pair.  The 
signals rij could be either RF or envelope. 

At this point, it is desirable to simplify the notation 
in Eq. (2).  First, it is possible to replace the dual 

FIGURE 1. Diagram showing the plate dimensions and transducer arrangement for simulations and experiments.  
Location (a,b) is an imaging location away from the simulated damage, and (c,d) is the location of the simulated 
damage. 
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summation with a single summation of M terms by re-
indexing each term as appropriate: 

 ( )
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∑∫  (3) 

The summation can be described in vector format as a 
function of the weighting coefficients: 

 ( ) ( ) ( )
2T

,,  d ,x yx yP t w t t= ∫e r e
  

 (4) 

where the superscript "T" indicates the transpose.  The first 
term in the right-hand-side of Eq. (4) contains the back-
propagated signals, ( ),x y tr



, organized as row vectors: 

 ( )
T

1
, 1

g g

.xy Mxy
x y M

d d
t r t r t

c c

    
= + +            

r


  (5) 

The second term, e


, is a column vector containing the 
weighting coefficients.  To facilitate discussion in the 
context of MVDR, e



 is referred to as the "look direction."  
Throughout this paper, it is assumed that e



 is normalized 
to have unit L2 norm.  After expanding the squared term of 
Eq. (4) into two complex conjugate terms, Eq. (4) can be 
simplified to: 

 ( ) HDS
, , .x y x yP =e e R e
  

 (6) 

In Eq. (6) the superscript "H" represents the Hermitian 
transpose, and the spatiotemporal correlation matrix, Rx,y, 
is calculated over the time-window of interest:   

 ( ) ( ) ( )* T
, ,, d ,x y x yx y t t w t t= ∫R r r

 

 (7) 
where the superscript "*" indicates the element-wise 
conjugation of a vector.  From Eqs. (6) and (7), the pixel 
value, ( )DS

,x yP e


, is maximized when the back-propagated 

signal vectors, ( ),x y tr


, are scalar multiples of the look 

direction, e


, since their inner product will be maximized. 

The envelopes of the received, differenced signals 
for the three transmitter-receiver pairs of Fig. 1 are shown 
in the top plot of Fig. 2.  These signals were generated 
using a ray tracing model incorporating boundary 
reflections via the method of images, and were modeled 
without dispersion for demonstration purposes.  The 
source time function was a 3-cycle, 250 kHz, Hanning 
windowed sinusoid.  Scattering characteristics are based 

on through-hole scattering fields generated using the low 
frequency approximation derived by Grahn [29] for 250 
kHz S0 incident and scattered waves.  Back-propagated 
signals for pixel locations (a,b) and (c,d), shown in the 
middle and bottom plots of Fig. 1, are clearly different.  
Back-propagated signals at the damage location, (c,d), all 
have similar appearance and are aligned in time, which is 
clearly not the case for the back-propagated signals at the 
non-damage location, (a,b).  As a result, the pixel value for 
(c,d), when calculated as per Eq. (6), is expected to be 
higher than that for (a,b) or any other non-damage 
location.  Note that the shaded regions correspond to the 
time window of interest. 

Figure 3 shows the image generated using delay-
and-sum imaging with a time window of 12 μs and with 
the weights inversely proportional to the square-root of the 
product of the propagation distances: 

T

11 1  ,xy Mxyd d× × 
 e



   (8) 

where mxyd ×  is the product of the distances dixy and djxy 
defined in Eq. (2).  The multiplication of propagation 
distances is necessary to accurately reflect the geometric 
spreading from both the source and the scatterer.  Note that 
the weights are selected to maximize the pixel value at the 
damage location by matching the anticipated amplitude 
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FIGURE 2. Received (top) and back-propagated (middle and 
bottom) signals.  The shaded areas for the back-propagated 
signals indicate a 12 μs integration window centered at 13 μs. 
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relationship between signals in the back-propagated signal 
vectors, ( ),x y tr



. 
 In Fig. 3 and for the entirety of this paper, images 
are shown on a 20 dB scale, with the color scale aligned so 
that the peak value of the image corresponds to the top of 
the color bar.  Figure 3(b) is a plot of the pixel values of 
Figure 3(a) as a function of distance from the simulated 
damage location.  For the case when more than one pixel is 
located a specific distance from the true damage location, 
all of the pixel values are plotted, which results in a 
vertical distribution of points that extends from the 
smallest pixel value at that distance to the largest.  The 
values are normalized so that the pixel value at the damage 
site is one.  A perfect image would have a pixel value of 
one at a distance of zero and all other pixel values would 
be zero.  Figure 3 illustrates that although the damage 
location can be identified, many artifacts are present that 
cannot be distinguished from damage on the basis of 
amplitude.   

To effectively compare and contrast imaging 
methods, it is useful to establish a single quantitative 
measure of performance.  Previously reported figures of 
merit, such as described in [20], do provide a means to 
evaluate images; however, it is desirable to characterize 
the quality of an image with a single scalar value.  

A performance metric is proposed here that takes 
into account artifact amplitude, distance from damage, and 
overall noise floor.  The proposed metric is the exponential 
coefficient, c, that results from a least-squares exponential 

curve fit to the pixel values, arranged as a function of 
distance from the damage location: 

( )
( )

       for ,
0

cxP x
e x X

P
−≈ ∈  (9) 

where P(x) is the pixel value as a function of distance from 
the known damage location and X is the set of all 
distances.  This metric was chosen because it provides a 
single value that (1) increases (decreases) as the damage 
location becomes more focused (defocused), (2) increases 
(decreases) as the overall noise floor is lowered (raised), 
and (3) increases (decreases) as artifacts are moved 
towards (away from) the true damage site.  In other words, 
the larger the value of c, the closer the image is to perfect 
(a single non-zero pixel value at the damage site), and 
artifacts are penalized more the further they are located 
from the true damage site.  To find c, a least-squares fit is 
performed on the logarithmic values as: 

( )
( )

2

ˆ arg min ln .
0c x X

P x
c cx

P∈

  
= +      

∑  (10) 

It is also important to note that this metric is only 
valid if the damage location is precisely known, such as 
for simulations and controlled experiments.  Although this 
restriction limits widespread applicability, it still provides 
a mechanism for quantitatively comparing images and 
algorithms.   

FIGURE 3. Delay-and-sum imaging using simulated envelope signals.  (a) Image displayed using a 20 dB 
scale, and (b) normalized pixel values versus distance from damage location ( ĉ  = 6.40). 
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The exponential curve overlaid on Fig. 3(b) 
represents the curve that minimizes the performance 
metric of Eq. (10).  For this image, ĉ  = 6.4. 

IV. MVDR IMAGING 

Minimum Variance Distortionless Response 
(MVDR) imaging [4], also known as Capon’s Method [5], 
is a covariance technique that can be used to improve 
imaging performance.  In this section the mathematical 
basis for MVDR imaging is first reviewed and then 
various aspects of MVDR are considered that affect 
imaging efficacy. 

A. Mathematical Basis of MVDR 

To begin, consider the following 
eigendecomposition of the correlation matrix in Eq. (7): 

 
H

,
1

,
M

i ix y i
i
λ

=

=∑R v v
 

 (11) 

where λi are eigenvalues and iv


 are unit-norm 
eigenvectors specific to the correlation matrix Rx,y.  Since 
the correlation matrix is Hermetian symmetric, each 
eigenvalue is non-negative and the eigenvectors are 
orthogonal to one another.  Throughout the paper, the 
eigenvalues are assumed to be ordered from largest to 
smallest, so 1v



 will always be the eigenvector 
corresponding to λ1 , the largest eigenvalue. 

Consider the set of backpropagated signals 
corresponding to a pixel location that exactly coincides 
with a scattering location, such as the back-propagated 
signals for (c,d) in Fig. 2.  For an ideal scatterer and no 
additional echoes, each back-propagated signal comprises 
a common signal, x(t), that is zero outside of the window 
of interest and scaled according to some relationship, s



, 
which is constrained to have unit-norm: 

 ( ) ( ), .c d t x t=r s
 

 (12) 
From the eigendecomposition of the correlation matrix for 
this simple case, the unit-norm relationship between 
signals, s



, is equal to 1v


, the energy of x(t) is equal to λ1, 
and all other eigenvalues are zero: 

( ) ( ) H H2
1 1, 1 d .c d x t w t t λ= =∫R s s v v

   

 (13) 
By substituting Eq. (13) into Eq. (6), one can see that the 
pixel value ( )DS

,c dP e


 is maximized at a value of  λ1 when 

1= =e v s
  

 and minimized at a value of  0 when 1⊥e v
 

.    
In other words, if the look direction, e



, accurately reflects 
the amplitude relationship between signals, the pixel value 
is maximized.    

To reduce image artifacts, it is desirable to 
minimize the pixel value for any location that does not 
correspond to damage.  By assuming that the look 
direction, e



, represents the amplitude relationship between 
signals in the case that damage is present at a pixel 
location, such as in Eq. (8), a constrained optimization 
problem can be constructed: 

H
,min x yw R w

 

    such that     
H

1=w e
 

. (14) 

Here w


 represents a vector of optimal weights that 

satisfies Eq. (14).  In words, the 
H

,min x yw R w
 

 term 
minimizes the pixel value at all locations, while the 
constraint of the inner product of w



 and e


 preserves the 
pixel value at damage locations.  The preservation of pixel 
values by the constraint can be made clear with a brief 
example.   Recall that for the pixel value at (c,d) described 
in the previous section, the pixel value is maximized at a 
value of  λ1 when 1= =e s v

  

.  Substituting Eq. (13) into 
the left-hand-side of Eq. (14) and replacing 1v



 with e


 
yields, 

2H
, 1 .

H
c d λ=w R w w e

   

 (15) 

Therefore, by constraining the inner product of  w


 and e


 
to have unit value, the pixel value at damage locations is 
preserved at a value of  λ1.  

The optimal solution to this minimization problem 
can be found through the use of a Lagrange multiplier, α, 
to satisfy the look direction constraint,   

( )H H
, 1 .x yL α= + −w R w w e

   

 (16) 

The Lagrangian L is minimized by taking the derivative of 
Eq. (16) with respect to w



 and setting it equal to zero, 
which results in: 

 1
, .

2 x y
α −= −w R e

 

 (17) 

By substituting the above equation for w


into the inner 
product constraint of Eq. (14), α can readily be shown to 
be: 
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 H 1
,

2 .
x y

α
−

= −
e R e
 

 (18) 

By further substituting the above equation for α back into 
Eq. (17), a closed-form expression for w



 that satisfies Eq. 
(14) is obtained: 

 ( )
1
,

H 1
,

.x y

x y

−

−
=

R e
w e

e R e



 

 

 (19) 

Using this equation, w


can be computed at each pixel 
location. 

MVDR imaging is performed in a similar fashion 
to delay-and-sum imaging; however, instead of using the 
look direction directly, the optimal weights, ( )w e

 

, are 

calculated and used: 

 ( ) ( ) ( )HMV
, , ,x y x yP =e w e R w e
    

 (20) 

where ( )w e
 

is defined as in Eq. (19).  Figure 4 shows 

imaging performance with MVDR using the same e


 as 
given in Eq. (8).  Visually, Fig. 4 clearly identifies the 
damage location with significantly reduced artifacts 
compared to Fig. 3.  The performance metric ĉ  has 
increased from 6.4 to 12.7. 

Note that the MVDR approach to imaging is an 
optimal solution to Eq. (14).  As such, since Eq. (14) 
constrains the weights to reduce any energy that is not in 
the look direction, a reduction in artifact amplitudes should 

be expected over conventional delay-and-sum 
beamforming with the same look direction.  

B. Modeling Errors and Regularization 

Although MVDR offers substantial improvement 
over conventional delay-and-sum imaging, careful 
consideration must be given to the operating environment 
and the implications of inaccurate modeling assumptions.  
Errors in transducer locations, transducer phase and gain 
differences, and inaccuracies inherent in the sampled 
approximation to the covariance matrix all constitute 
modeling errors that can severely degrade algorithmic 
performance if they are not accommodated. 

As shown in [30], as signal-to-noise ratios 
increase, adaptive methods such as MVDR become 
increasingly sensitive to modeling errors.  This sensitivity 
is in contrast to conventional imaging techniques that 
become less sensitive to modeling errors as signal-to-noise 
ratios increase.  To address this problem, regularization of 
the matrix inverse in Eq. (19) is performed using diagonal 
loading [31], which is shown to be optimal for a number of 
constrained optimization problems [32], including Eq. (14)
, and also addresses the scenario when an insufficient 
number of samples are used to generate the covariance 
matrix.  The degree of diagonal loading can be described 
as some factor, f, of the largest eigenvalue, λ1: 

 ( ) 11
, , 1 .x y x y f λ

−− = +R R I  (21) 

FIGURE 4. MVDR imaging using simulated envelope signals.  (a) Image displayed using a 20 dB scale, and 
(b) normalized pixel values versus distance from damage location ( ĉ  = 12.72). 
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Bounds can then be established for f, as described in [30]: 

 1
2

1

1 1 .
nM f

λ
λ σ ε

< <
+

 (22) 

Here 2
nσ  is the average noise power observed across all 

receivers and ε is the degree of modeling error present in 
the unit look direction, e



. The modeling error is quantified 
by the norm of the difference between the nominal look 
direction, e



, and the “true” or “actual” look direction, e , 
which accurately reflects the underlying signal 
relationships within the received signals: 

 .ε = −e e


  (23) 

Since the look direction is constrained to have unit norm, ε 
will be in the range: 0 2ε≤ ≤ .  Rearranging Eq. (22) to 
solve for f and assuming a large signal-to-noise ratio (

2
1 nλ σ ) reveals: 

 .f Mε ≤ <  (24) 
The lower bound for f ensures that sufficient regularization 
is present to accommodate potential error in the look 
direction, while the upper bound prevents the 
regularization noise, λ1f, from unnecessarily degrading 
performance. 

An example is provided here to illustrate the 
impact of regularization on MVDR performance.  

Consider a pixel location at which the cross-correlation 
matrix, Rx,y, has a single, non-zero eigenvalue, λ1, that is 
equal to one and 1v



 is the ideal steering vector.  Recall 
from Eq. (15) that the pixel value, ( ),

MV
x yP e



, is maximized 

at a value of λ1 when 1=e v
 

.  Figure 5 illustrates the pixel 
value, ( ),

MV
x yP e



, as a function of the inner product between 

the look direction, e


, and 1v


 for several regularization 
values.  As the regularization is increased, tolerance for 
inaccuracies in the look direction is also increased.  This is 
apparent in Fig. 5 by comparing the pixel values that result 
when the inner product is close to, but not exactly, one.  
Unfortunately, the tolerance comes at the cost of larger 
artifacts, which can be seen by comparing the pixel values 
that result when e



 and 1v


 are not in agreement and 
produce an inner product much less than one.  Therefore, 
to maximize the benefit of MVDR, it is desirable to use as 
little regularization as possible while keeping f > ε.  To 
maintain consistency throughout the paper and allow for 
inaccuracies in the look direction when working with 
experimental data, a regularization factor of 10-1 is used 
for all MVDR imaging. 

C. Scattering Characteristics 

With MVDR imaging, the look direction takes on 
a much more significant role than for delay-and-sum 
imaging.  As such, further imaging improvements can be 
obtained by incorporating additional information into the 
look direction. Specifically, the look direction can be 
modified to incorporate information about the scatterer: 

T
1

, 1 ,  ,M
x y xy x y Mxyd dψ ψ× × 

 e


   (25) 

where ,
k
x yψ  corresponds to the scattering coefficient of an 

incident wave on point (x,y) for the kth transmitter-receiver 
pair.    Note that as before, e



 is scaled to be a unit-norm 
vector.  

Significant effort has been expended by many 
researchers to accurately describe scattering fields for a 
number of defects.  Surface-breaking defects of various 
sizes [33], through-thickness holes [34, 35],  holes with 
and without symmetrical notches [36], and asymmetric 
scatterers such as notches [37] have been evaluated.  As 
mentioned earlier, all through-hole scattering fields for this 
paper were generated using the low frequency 

FIGURE 5. Pixel values as a function of inner product between 

look direction, e


, and largest eigenvector, 1v


.  Four different 
regularization factors (f = 10-5, 10-3, 10-1, 100) are shown for 
MVDR imaging, which can be compared with the conventional 
delay-and-sum case (D&S). 
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approximation derived by Grahn [29] for the center 
frequency of the propagating signals. 

In previous images, the scattering field was 
assumed to be uniformly distributed (refer to  Eq. (8)); 
however, the simulation actually used scattering 
characteristics corresponding to a 6 mm through-hole.  
Figure 6 shows scattered amplitude and phase calculated 

for a 250 kHz sinusoid incident on a 2 mm through-hole, a 
6 mm through-hole, and a uniform scatterer.  Note that 
although the scattering pattern for a through-hole is 
independent of incident angle, this is not the case for an 
arbitrary scatterer such as a crack or notch.  The concept of 
a scattering matrix was introduced in [38] to describe far-
field scattering from flaws of arbitrary shape.   

FIGURE 6. Scattering fields for a uniform scatterer compared to 2 mm and 6 mm through-holes generated as per Grahn 
[37].  The scattering angle is the angular difference between the incident and scattered waves.  (a) Scattering field 
magnitude (normalized) as a function of angle, and (b) scattering field phase as function of angle. 

FIGURE 7. MVDR imaging with matched scattering field using simulated envelope signals.  (a) Image 
displayed using a 20 dB scale, and (b) normalized pixel values versus distance from damage location ( ĉ  = 
17.69). 
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Figure 7 shows the performance improvement 
obtained by incorporating the appropriate scattering field 
into the look direction.  Note that, unlike the other methods 
discussed in this section, the use of scattering 
characteristics improves the peak-to-noise ratio of the 
image by increasing the peak value with little impact on 
the noise floor.    Figure 7 results in a performance metric 
of ĉ  = 17.7. 

D. Phase Information 

Another factor that can significantly improve 
imaging performance is the inclusion of phase information.  
Imaging with envelope data, as shown in Figures 3, 4, and 
7, discards valuable information contained in the received 
signals.  Two signal formats are available to convey the 
phase information of the scattered field for imaging: (1) 
raw RF and (2) analytic representation.  Since both formats 
contain identical information, imaging performance is 
expected to be comparable between the two.  Since the 
analytic representation treats the signals as complex 
values, making phase information about the scattered field 
easily accessible, the analytic representation is used in this 
paper when phase information is incorporated.  

Note that the use of phase information in either 
format may slightly change two aspects of the imaging 
algorithm as it has been described: (1) dispersion 
compensation may become necessary, depending on 

propagation distances and the degree of dispersion present 
in the frequency range of operation, and (2) scattering 
fields will need to include complex reflection coefficients, 
conveying phase information in addition to magnitude, as 
in Fig. 6. 

Figure 8 represents the imaging improvements 
obtained by using phase information, which are manifested 
by a much smaller defect "spot size" and a significantly 
lower noise floor.  Clearly, the additional phase 
information provides for significant performance 

FIGURE 8.  MVDR imaging with matched scattering field using simulated analytic signals.  (a) Image 
displayed using a 20 dB scale, and (b) normalized pixel values versus distance from damage location ( ĉ  = 
20.96). 

FIGURE 9.  MVDR imaging performance as a function of 
window size using simulated data. 
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improvement as compared to the use of envelope signals.  
The performance metric for Fig. 8 is ĉ  = 21.0. 

There are two fundamental reasons for the 
significant improvement.  First, the use of phase 
information improves the time resolution of the signal.  As 
the time resolution of the signal is reduced, the spatial 
resolution of the image is expected to improve.  Second, 
the use of the complex signals for MVDR imaging reduces 
the image noise floor by reducing the likelihood that the 
look direction will accidentally agree with 1v



.   

E. Window Size 

Imaging performance can be further improved by 
modifying the window width used for the correlation 
integration in Eq. (7).  It is assumed that the same time 
window is used for all pixel locations, and that it is 
centered at a time that maximizes the signal-to-noise ratio.  
For example, for the case illustrated in Fig. 2, the 12 μs 
integration window is centered at 13 μs.   

The length of the time window is determined to 
balance the need to (1) accurately estimate the correlation 
matrix and (2) minimize the impact of undesired 
reflections.  For received signals that contain Gaussian 
white noise, larger time windows provide a mechanism to 
minimize the effects of noise on the correlation matrix.  In 
contrast, at image locations with artifacts, the pixel value 

is non-zero because there are non-negligible components 
of the back-propagated signals that are in agreement with 
the look direction.  Since, non-real-time guided wave 
systems can reduce the level of additive Gaussian white 
noise to arbitrary levels by averaging a number of 
waveforms, increasing the window size simply increases 
the window of opportunity for undesired agreement 
between the look direction and non-damage related 
signals.  Therefore, improved performance can be 
achieved by minimizing the window length. 

For the case of high-SNR received signals, the 
correlation matrix may be accurately generated with as 
little as a single vector that corresponds to a time that 
maximizes the signal-to-noise ratio.  Figure 9 depicts 
imaging performance as a function of window size for the 
simulated case, which uses a Hanning-windowed sinusoid.  
For more complex excitation signals, it is possible that 
larger windows may exhibit improved performance.   

Note that as the window size is decreased, the 
correlation matrix used by MVDR becomes 
underdetermined.  As shown previously, however, 
regularization by diagonal loading is used to mitigate this 
situation. 

Figure 10 illustrates the imaging performance for 
the test-case after reducing the window-size from the 12 μs 
window used previously to 0.2 μs.  The performance 
metric is increased from 21.0 to 28.4. 

FIGURE 10.  MVDR imaging with matched scattering field using simulated analytic signals and a reduced 
window size.  (a) Image displayed using a 20 dB scale, and (b) normalized pixel values versus distance from 
damage location ( ĉ  = 28.41). 
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V. DISCUSSION 

In addition to accurate defect localization, 
minimized artifacts and improved resolution, there are 
three factors that are of interest in SHM and NDE images:  
graceful degradation, sensitivity to the damage location, 
and the ability to perform defect sizing and 
characterization. 

The improved imaging performance demonstrated 
in Section IV is largely due to the heightened sensitivity 
resulting from the use of MVDR and phase information.  
One concern with increased sensitivity is the risk of 
algorithmic failure in the presence of noise or modeling 
errors.  Modeling errors can include uncompensated or 
inaccurate receiver phase, scattering information, and 
dispersion compensation. Figure 5 demonstrates that as 1v



 
and the look direction diverge, the pixel value decays 
gracefully as a function of the regularization.  Therefore, 
MVDR imaging with phase information is expected to 
exhibit graceful degradation in the presence of noise or 
modeling errors if appropriately regularized.    

The pixel value obtained using both MVDR 
imaging and traditional delay-and-sum imaging was shown 
in Section IV to be equal to the largest eigenvalue of the 
correlation matrix when the look direction, e



, is identical 
to 1v


.  The fact that there is a relationship between the 
pixel value and largest eigenvalue implies that imaging 

performance is sensitive to location. When damage is close 
to the sensors, the propagation distances are short and 
received signals are strong, resulting in a large λ1, but 
when damage is far from the sensors, the received signals 
are weaker, resulting in a smaller λ1.  Intuitively, 
normalizing the covariance matrices to have unit norm 
would correct for this, making the imaging algorithm less 
sensitive to pixel location.  Alternatively, the received 
signals can be adjusted in amplitude as a function of time 
or distance to compensate for geometric spreading.  In 
actuality, however, normalization of covariance matrices 
and time or distance amplitude compensation introduces 
artifacts because they effectively amplify pixel values that 
originally had no, or very little, signal present.  Without 
normalization, pixels located further away from the array 
(in particular, outside the bounding polygon) do have 
smaller amplitudes.  However, the reduced amplitude has 
far less of an adverse impact than the artifacts introduced 
by covariance normalization or signal amplitude 
compensation.  In simulations, imaging of damage in the 
corners of the plate still produces impressive results, as 
shown in Fig. 11. 

Finally, defect characterization, including sizing, 
is a major goal of imaging with SHM and NDE systems.  
It is desirable for the image to reflect the relative 
magnitudes of the defects, meaning that a larger damage 
site should have a larger pixel value.  For the simple case 
of multiple uniform scatterers of varying sizes, MVDR 
imaging can produce such relative pixel values if 

FIGURE 11.  MVDR imaging with matched scattering field using simulated analytic signals and a reduced 
window size.  (a) Image of a corner scatterer displayed using a 20 dB scale, and (b) normalized pixel values 
versus distance from damage location ( ĉ  = 12.24). 



Hall, J. S. and Michaels, J.E., “Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array,” IEEE Trans. 
Ultrason. Ferroelectr. Freq. Control, 57 (10), pp. 2311-2323, 2010 

 

Page 13 of 17 

 

compensation is made for geometric propagation loss.  As 
mentioned in the previous paragraph, however, this comes 
at the expense of introducing artifacts by amplifying noise 
in the received signals.  In realistic environments, damage 
sites of different sizes will have different scattering fields.  
As such, the sensitivity to scattering fields provides an 
alternative mechanism to characterize both the size and 
type of damage, which is the subject of ongoing research 
efforts. 

VI. EXPERIMENTAL RESULTS 

The proposed techniques to reduce imaging 
artifacts were applied to previously collected experimental 
data originally reported in [24].  The experimental setup is 
similar to the simulated test-case discussed throughout the 
paper.  Six PZT transducers were arranged as in Fig. 1 on a 
610 x 610 x 4.76 mm aluminum 6061 plate.  A impulsive 
excitation was used to excite the transmitters, and 
broadband received signals were sampled at 25 MHz.  A 
total of 15 different transmitter-receiver pairs were used.  
After baseline data were collected, a 2 mm diameter 
through-hole was drilled at the location indicated in Fig. 1.  
Expected scattering characteristics for imaging were 
generated using the technique proposed by Grahn [29] for 
incident and scattered S0 waves at 250 kHz, which is the 
dominant mode here.  Dispersion compensation was not 
performed. 

Figures 12 and 13 illustrate imaging performance 
using traditional delay-and-sum imaging as described in 
Section III.  Figure 12 was generated using the envelope of 
the analytic signal, while Fig. 13 was generated with the 
analytic signal itself.  Note that even with delay-and-sum 
imaging, the use of phase information improves the 
imaging performance, although the resulting image of Fig. 
13(b) has a relatively high noise floor.   

Figures 14 and 15 illustrate imaging performance 
using MVDR as described in Section IV.  As in Figures 12 
and 13, Fig. 14 was generated using the envelope of the 
analytic signal, while Fig. 15 used the analytic signal.  
Note that the increased noise floor observed in Fig. 15, as 
compared to the simulated equivalent of Fig. 10, is most 
likely due to the combination of imperfect baseline 
subtraction, lack of dispersion compensation, and errors in 
the approximated scattering characteristics.  These 
inaccuracies result in the peak not reaching the maximum 
possible value, which is manifested in both plots of Fig. 15 
as an increased noise floor. 

VII. CONCLUSION 

This paper has identified four techniques for 
reducing artifacts typically observed in guided wave 
imaging.  The use of MVDR for imaging was motivated 
mathematically and demonstrated with both simulated and 
experimental signals.  After introducing the concept of 
MVDR imaging, images were further improved by 
incorporating scattering field information into the look 
direction.  The inherent ability of the MVDR algorithm to 
suppress imaging artifacts was then shown to further 
enhance images when the analytic representation of the 
received signals is used, which includes phase information.  
Finally, for high SNR environments, a direct relationship 
was shown between the time integration window length 
and the presence and amplitude of imaging artifacts.  
Improvement was demonstrated quantitatively for each 
technique using a custom performance metric. 

The primary contributions of the paper include the 
application of the MVDR algorithm to in situ guided wave 
imaging applications with spatially distributed arrays, a 
quantification of the improvements achieved when phase 
and scattering information are used in conjunction with 
MVDR, and an identification of the importance of 
minimizing the window size when operating in a high 
SNR environment.  For in situ guided wave imaging 
systems with spatially distributed arrays, which must 
balance system complexity and cost with imaging 
performance, the improved ability to detect and localize 
damage demonstrated here has clear significance.   The 
methods illustrated here could also be readily applied to 
conventional compact bulk and guided wave arrays 
operating in the near field.  Future work remains in defect 
sizing and characterization, accommodating frequency-
dependent scattering fields, and improving experimental 
performance through more accurate system phase 
characterization. 
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