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1. Introduction

Wave propagation is fundamental to a wide range of fields and applications, and many

modern systems employing electromagnetic, acoustic or elastic waves require accurate

knowledge of the operating environment to function properly. The performance of any

of these systems is understandably linked to the accuracy of assumed propagation

models and associated parameters, such as propagation distances, transmitter and

receiver transfer functions, dispersion, propagation loss, etc. Errors in these a priori

assumptions, caused by any number of factors, can impose an upper limit on a system’s

performance. This paper presents a model-based parameter estimation technique for

wave propagation problems in which multiple signals are available for analysis. The

approach can be tailored to application-specific model assumptions, including cases

with multiple transmitter and receiver transfer functions.

To demonstrate the capabilities and adaptability of the parameter estimation

algorithm, experimental validation is performed with two sets of ultrasonic guided

wave data that conform to two different sets of model assumptions. Guided waves

highlight the capabilities of this algorithm because they are dispersive and the

transmitter and receiver transfer functions are typically transducer specific. The ability

to simultaneously estimate transmitter and receiver transfer functions, propagation

distances, and dispersion curves using minimal a priori information has direct

applicability to structural health monitoring applications that employ guided waves

with in situ sensors.

Inverse problems of acoustic and elastic waves generally attempt to estimate

information about either the excitation source or the propagation medium. For

example, source estimation algorithms can provide information about sources of seismic

activity [1], underwater sound [2], or acoustic emission from cracks [3, 4]. Alternatively,

information about the propagation medium is extracted for applications such as

seismic exploration [5] and structural damage characterization [6, 7]. In contrast,

the algorithm presented here leverages inherent model constraints to simultaneously

characterize both the source and the propagation medium. Although such an ability

has been demonstrated for other problems [8, 9], simultaneous estimation of both source

characteristics and medium properties has not been achieved for signals recorded in

a homogeneous, dispersive medium aside from earlier work by the authors. In Hall

and Michaels [10], an application-specific model-based parameter estimation technique

is presented as a method for characterizing the source waveform and propagation

environment using a set of received guided wave signals. Similar to the model-

based method proposed in this paper, the previously reported technique is capable

of estimating dispersion relations, propagation distances, propagation loss, and the

composite transmitter-receiver transfer function using minimal a priori information.

However, unlike the algorithm presented here, the method reported in [10] requires

identical transmitters and receivers as well as the presence of two propagating modes,

which limits general applicability.
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A number of techniques have been developed to estimate some of the specific wave

propagation parameters estimated in the presented algorithm under various assumptions

and constraints. A thorough review of this prior work is provided in Hall and Michaels

[10] in the context of ultrasonic guided waves, where much of this work was on the

estimation of dispersion relations. For example, if the propagation distances are known,

then time-frequency representations are capable of graphically illustrating the frequency-

dependent group velocities for dispersive waves [11, 12, 13]. Similarly, if a propagating

wave is sampled at known, regularly spaced, and sufficiently close spatial intervals,

Alleyne and Cawley [14] demonstrated that a two-dimensional (2D) Fourier transform

can provide a graphical representation of the dispersion relations. In both of these

cases, the resulting graphical image requires some additional post-processing to obtain

numerical estimates. A third technique, the phase spectral analysis method, was

originally proposed in 1977 by Sachse and Pao [15]. This technique obtains numerical

estimates of the dispersion relations based on phase differences of the measured signals,

assuming that the propagation distances and transmitted signal are known.

This paper is organized in the following manner. Section 2 presents the model-

based parameter estimation algorithm, which is described in six separate stages: (1)

problem setup, (2) expected noise behavior, (3) distance vector estimation, (4) linear

solution, (5) nonlinear search, and (6) algorithm summary. Finally, Section 4 concludes

the paper with a brief summary.

2. Parameter Estimation

2.1. Problem Setup

A propagating wave can be modeled in the frequency domain as:

S (ω) = T (ω)R (ω)G (ω) , (1)

where S (ω) is the received signal; T (ω) is the transmitter transfer function, which

incorporates all transmitter-specific transfer functions; R (ω) represents a similar

combination of all receiver-specific transfer functions; and finally, G (ω) represents

a distance-dependent transfer function that incorporates both propagation loss and

dispersion. G (ω) can be modeled as

G (ω) =

(
d

δ

)−p(ω)

exp (−ik (ω) d) , (2)

where d is the propagation distance, p (ω) is referred to as propagation loss, k (ω)

is a frequency-dependent wavenumber, and i is equal to
√−1. The form of (2)

is motivated by the well-known far-field behavior for both spherical and cylindrical

waves [16], where dispersion is accounted for by the complex exponential term, and

the geometric spreading loss, represented as (d/δ)−p(ω), is permitted to vary with

frequency to accommodate possible frequency-dependent behavior. The δ variable

embedded in the geometric spreading loss term accounts for the fact that the inverse
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Table 1. Summary of working variables used throughout this paper.

Variable Size Description

Sm [3s× w] Frequency-domain data derived from recorded

signals
�dm [s× 1] Measured distances

�σ2
m [s× 1] Measured noise variance

SR, SI [s× w] Log-magnitude and phase responses of measured

signals

TR, TI [t× w] Transmitter-specific log-magnitude and phase

responses

RR, RI [r × w] Reciever-specific log-magnitude and phase re-

sponses

�p [w × 1] Propagation loss vector
�k [w × 1] Wavenumber vector
�d [s× 1] Propagation distance vector
�d� [s× 1] Logarithm of scaled propagation distance vector
�b [s× 1] All integer vector associated with phase measure-

ment
�1x, �0x [x× 1] All ones or all zeros vector

TΔ, �τ [t× w],[t× 1] Frequency-dependent (independent) components

of TI

RΔ, �ρ [r × w],[r × 1] Frequency-dependent (independent) components

of RI

�kΔ, κ [w × 1],[1× 1] Frequency-dependent (independent) components

of �k

MT, Mτ [s× t] Relates measurements in S to T estimates

MR, Mρ [s× r] Relates measurements in S to R estimates

MTR, Mτρ [s× (t+ r)] Composite matrices ([ MT MR ] and

[ Mτ Mρ ])

M�

M [s×m�

M ] aOrthonormal basis for column space of MM

M�

M [s× (s−m�

M )] aOrthonormal basis for left null space of MM

M�=
M [(t+ r)×m�=

M ] aOrthonormal basis for null space of MM

P�

M [s× s] aProjection matrix onto M�

M

PΔ [w × w] Projection matrix onto null space of �1T
w

B [s× 3(t+ r + 1) + s] Matrix used to isolate �b elements ([ 0 Is ])

a M subscript may be either TR or τρ.
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distance law only defines proportional relationships (nominally d−1/2 or d−1, depending

on the application). Note that attenuation from a lossy medium can be handled by

incorporating an exponential decay term, such as exp (−a(ω)d), into (2) either in lieu

of or in addition to the geometric spreading loss term. Since experimental validation is

performed with guided waves, in which geometric spreading loss dominates attenuation,

the algorithm is presented with geometric spreading loss.

The overarching goal of model-based parameter estimation is to obtain data-driven

estimates of T (ω), R (ω), d, p (ω), and k (ω) by leveraging the inherent constraints of the

assumed model in (1) and (2). The general approach to address this nonlinear problem

is to convert it to a linear problem through the logarithm function:

ln (S (ω)) = ln (T (ω)) + ln (R (ω))− p (ω) ln

(
d

δ

)
− ik (ω) d+ i2πb. (3)

When taking the logarithm of a complex number, the imaginary part of the result is

constrained to be bounded by ±π. Therefore, an integer multiple of 2π must be included

in the phase, which necessitates the i2πb term in (3) where b is an integer. Note that the

the real and imaginary parts of (3) can be separated into two independent equations:

ln (|S (ω)|) = ln (|T (ω)|) + ln (|R (ω)|)− p (ω) ln

(
d

δ

)
, (4a)

�S (ω) = �T (ω) + �R (ω)− k (ω) d+ 2πb. (4b)

From a practical standpoint, the received signals are assumed to be digitally

sampled in the time domain and frequency-domain measurements are obtained via a

fast Fourier transform (FFT). As such, the frequency-domain measurements correspond

to measurements at discrete frequencies. If these discrete frequencies are spaced

sufficiently close to one another, the received signal phase response can be unwrapped

by adding or subtracting integer multiples of 2π to eliminate phase discontinuities. To

ensure the phase unwrapping operation is performed accurately, the frequency domain

measurements must span a continuous spectral band with positive SNR within each

frequency bin. By unwrapping the spectrum, the b in (4b) becomes consistent across

the entire frequency spectrum, which provides an additional model constraint that can

be leveraged during parameter estimation. A lower bound was developed previously

[10] for the number of time-domain samples, n, required to produce sufficiently close

sampling in ω:

n >
2πFsdmax

vmin

[
π − 2 sin−1

(
1

Qmin

)] , (5)

where Fs is the sampling frequency, dmax is the maximum distance propagated for any

received signal, vmin is the minimum group velocity at any frequency, and Qmin is the

minimum signal-to-noise ratio (SNR) for any frequency. Note that the number of time-

domain samples, n, can be increased to satisfy (5) by padding the received signals with

zeros and does not translate to any system operational requirements.

To estimate the large number of unknowns in this problem, multiple S (ω)

measurements are necessary. Therefore, multiple signals are recorded over different
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propagation distances. The equations described in (4a) and (4b) can be converted into

matrix format to relate information from each of the received signals to each of the

parameters of interest:

SR = MTTR +MRRR − �d��pT, (6a)

SI = MTTI +MRRI − �d �k T + 2π�b �1T
w . (6b)

Here matrices are represented by boldface font, vectors by�·, and superscript “T” denotes

a matrix or vector transpose operation. The “R” and “I” matrix subscripts denote the

real and imaginary components of the logarithm of the data. The SR and SI matrices are

[s×w] matrices containing all measured information, where s is the number of received

signals and w is the number of frequencies. The TR and RR matrices correspond to

the t unknown ln (|T (ω)|) and r unknown ln (|R (ω)|) estimates and the TI and RI

matrices similarly correspond to the t and r unknown �T (ω) and �R (ω) variables,

respectively. The MT and MR matrices relate each row of the SR and SI matrices

to the appropriate row of TR, TI, RR, and RI. The elements of the MT and MR

matrices are assumed to be limited to the integers “1” and “0”, which is the case for all

envisioned scenarios. This construction allows the model to account for either common

or multiple transmitter and receiver transfer functions. The �p and �k vectors are [w× 1]

vectors that contain the propagation loss and wavenumber estimates, respectively. The
�b vector contains each of the s integers associated with the unknown multiples of 2π.

The �1w vector corresponds to a [w × 1] vector of all-ones. Finally, the “�” superscript

discriminates between the [s× 1] vector, �d, which contains the propagation distances in

vector format, and the [s× 1] vector, �d�, corresponding to the element-wise logarithm

of the propagation distances scaled by δ:

�d� = ln

(
1

δ
�d

)
. (7)

It is important to note that δ is an integral part of the assumed propagation model

and will, therefore, affect the resulting estimates of TR, RR, and �p. Throughout this

paper, the δ variable is selected to be the mean measured distance. Although this choice

of δ is somewhat arbitrary, it has been found to produce reasonable estimates for all

three parameters. Table 1 summarizes matrix and vector variables used throughout this

paper.

Let PΔ be a [w × w] projection matrix (PΔPΔ = PΔ) corresponding to the

null space of the all-ones row-vector, meaning that �1T
wPΔ = 0. Then the TI and

RI matrices of (6b) can each be described in further detail as the addition of two

separate components, one that is frequency-dependent, TΔ and RΔ, and another that

is frequency-independent, �τ and �ρ:

TI = TΔ + �τ �1T
w

RI = RΔ + �ρ �1T
w

(8)

where TΔ = TIPΔ and RΔ = RIPΔ. The wavenumber vector can be similarly

decomposed into:

�k = �kΔ + κ�1w (9)
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with �kT
Δ = �k TPΔ. Note that the decomposition of TI, RI, and �k into frequency-

dependent and frequency-independent components is performed here for mathematical

convenience and does not necessarily correspond to any physical properties or behavior.

To maximize the flexibility of the proposed model, two additional matrices, Mτ

and Mρ , are introduced to relate the frequency-independent values in �τ and �ρ to each

measurement in the SR and SI matrices. Under most circumstances, Mτ = MT and

Mρ = MR. However, there may be certain scenarios where the transmitter and receiver

transfer functions are assumed to be identical, with the exception of some constant

phase offset. In those cases, the Mτ and Mρ matrices may differ from MT and MR.

Incorporating (8) and (9) with (6b) yields:

SI = MTTΔ +Mτ �τ �1T
w +MRRΔ +Mρ �ρ �1T

w − �d �kT
Δ − κ�d �1T

w + 2π�b �1T
w . (10)

Since, by definition, TΔ and RΔ reside in the null space of the all-ones row-vector,

another set of equations can be obtained from (10) by right-multiplying SI with PΔ:

SIPΔ = MTTΔ +MRRΔ − �d �k T
Δ . (11)

The matrices in (6a), (10) and (11) can be consolidated into a single set of linear

equations:

AX = Sm, (12)

where

A =

⎡
⎢⎣

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

MT 0 0 MR 0 0 −�d� �0s �0s 0

0 MT Mτ 0 MR Mρ
�0s −�d −�d 2πIs

0 MT 0 0 MR 0 �0s −�d �0s 0

⎤
⎥⎦, (13a)

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1) TR

(2) TΔ

(3) �τ �1T
w

(4) RR

(5) RΔ

(6) �ρ�1T
w

(7) �p T

(8) �k T
Δ

(9) κ�1T
w

(10) �b�1T
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and Sm =

⎡
⎢⎣ SR

SI

SIPΔ

⎤
⎥⎦ . (13b)

Equation (12) represents the generalized propagation model in the format of a

nonhomogeneous matrix equation. The matrix Sm contains all frequency-domain

measurements, A represents the assumed propagation model, and X consists of the

unknown variables. Note that (13a) and (13b) represent a general structure for the

matrices of (12) under the current model assumptions. Two specific examples for these
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matrices are provided in section 3.2 and section 3.3. Alternative model assumptions can

be accommodated by updating the X and A matrices accordingly. Also, it is important

to point out that A does not contain all model constraints. Specifically, the elements of
�b are not constrained to be integers.

Throughout this paper, references are frequently made to the four vector subspaces

defined by the fundamental theorem of linear algebra [17]: (1) the column space, range,

or image, denoted by a “�” superscript, (2) the left null space or cokernel, denoted by

a “�” superscript, (3) the null space or kernel, denoted by a “ �=” superscript, and (4)

the row space or coimage, denoted by a “=”. These four vector subspaces are used in

reference to two matrices in particular, which have a profound impact on the algorithm’s

ability to estimate parameters:

MTR =
[
MT MR

]
, (14a)

Mτρ =
[
Mτ Mρ

]
. (14b)

Here both MTR and Mτρ are [s× (t+r)] matrices. Applying this vector space notation,

M �

TR is a matrix of orthonormal column vectors that span the column space of MTR.

The size of M �

TR is defined as [s × m�

TR]. Similar definitions can be made for the

other three vector subspaces as well as for the Mτρ matrix. Building upon the above

notation, projection matrices onto these vector subspaces are denoted as P matrices

with the appropriate superscripts and subscripts. So, P �

TR is a [s× s] projection matrix

that projects onto the vector subspace spanned by M �

TR (i.e. P �

TR = M �

TR(M
�

TR)
T).

Note that since (M �

TR)
TM �

TR = 0, P �

TRMT = 0 and P �

TRMR = 0. Finally, note

that the rank-nullity theorem relates the dimensionality of the column space, m�

TR, and

dimensionality of the null space, m�=
TR:

m�

TR +m�=
TR = t+ r. (15)

One last observation about the structure of A is in regards to the rank of the

matrix. The rank can be determined by examining linearly independent subsets of the

columns of A. Assuming that the number of unknown transmitter and receiver transfer

functions is smaller than the number of received signals (t+ r < s), then MTR and Mτρ

are not full rank. As such, �d and �d� are assumed to be linearly independent of MTR

and Mτρ. Therefore, the columns (1), (4), and (7) from (13a) span a column space

with m�

TR + 1 dimensions. Similarly, the columns (2), (5), and (8) also span a column

space of m�

TR + 1 dimensions that is orthogonal to the span of columns (1), (4), and

(7). Finally, the columns (3), (6), (9), and (10), which are linearly independent of the

two previous groups, span an s-dimensional column space since column (10) contains

an [s× s] identity matrix. Therefore, the rank of A is:

rank (A) = s + 2m�

TR + 2. (16)

2.2. Noise Analysis

One issue when working with any parameter estimation algorithm is the impact of

noise. If complex Gaussian white noise is assumed present in the measured frequency
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spectrum, two separate noise distributions are present in the elements of SI and SR,

that of phase noise and log-magnitude noise, respectively. This section characterizes

the noise distributions by determining their probability distribution functions (PDFs),

mean, and variance.

Consider the case of a single noisy measurement, Sm, that represents a single

complex value, S, that has been corrupted with an additive, circularly symmetric (a.k.a.

proper) complex Gaussian random variable, N , with zero mean and variance σ2
N:

Sm = S +N. (17)

The above equation can be described as a single, circularly symmetric complex Gaussian

random variable with μ = S. Recall that the PDF for a complex Gaussian random

variable in a Cartesian coordinate system is:

p (x, y) =
1

2πσxσy

exp

(
−1

2

(
(x− μx)

2

σ2
x

+
(y − μy)

2

σ2
y

))
. (18)

Since the noise is circularly symmetric, σ2
x = σ2

y =
σ2
N

2
. Without any loss of generality,

S is taken to be S = |S|+ j0, which means that (μx, μy) = (|S| , 0). Substituting these

values into (18) and converting to polar coordinates yields:

pSm (r, θ) = p (r cos θ, r sin θ)

=
r

πσ2
N

exp

(
2r |S|
σ2
N

cos θ − r2 + |S|2
σ2
N

)
, (19)

where pSm(r, θ) is the PDF of Sm in terms of r and θ assuming that 0 ≤ θ < 2π and

0 ≤ r. From (19), the log-magnitude and phase noise distributions can be characterized.

2.2.1. Log-Magnitude Noise Distribution Before the log-magnitude distribution can be

obtained, the magnitude distribution must be characterized. The PDF of |Sm| in terms

of r, p|Sm|(r), can be found by integrating (19) over all θ:

p|Sm| (r) =

∫ 2π

0

pSm (r, θ) dθ

=
2r

σ2
n

exp

(
−r2 + |S|2

σ2
n

)
I0

(
2r |S|
σ2
n

)
, (20)

where I0 (z) is a modified Bessel function of the first kind,

I0 (z) =
1

2π

∫ 2π

0

exp (z cos θ) dθ. (21)

Equation (20) is then used to define the additive noise associated with |Sm|,
|Sm| = |S|+N|·|, (22)

where N|·| is a random variable with PDF derived from (20):

p|·|(ν) = p|Sm| (ν + |S|) . (23)
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Figure 1. Log-magnitude and phase noise variance as a function of complex SNR.

Note that the two analytic solutions closely match the approximation for SNR greater

than 10 dB.

To find the PDF of the log-magnitude noise, note that:

ln (|Sm|) = ln
(|S|+N|·|

)
= ln (|S|) + ln

(
1 +

N|·|
|S|
)

= ln (|S|) +Nln|·|, (24)

where

Nln|·| = ln

(
1 +

N|·|
|S|
)
. (25)

The above equation defines the log-magnitude noise, Nln|·|, in terms of the magnitude

noise, N|·|. Therefore, the PDF of the log-magnitude noise, pln|·|(ν), can be defined in

terms of the magnitude PDF, p|·|(ν):

pln|·|(ν) = p|·|(|S| (exp (ν)− 1)). (26)

By combining (26), (23), and (20), the PDF of the log-magnitude noise distribution can

be obtained:

pln|·| (ν) = p|Sm| (|S| (exp (ν)− 1) + |S|)
= p|Sm| (|S| exp (ν))
= 2Q2 exp

(
2ν −Q2 (exp (2ν) + 1)

)
I0
(
2Q2 exp (ν)

)
, (27)

where Q = |S| /σN is referred to as the complex SNR.

Equation (27) indicates that the log-magnitude noise distribution, and therefore

the resulting mean and variance, is dependent on the complex SNR. Figure 1 shows the

log-magnitude noise variance vs. complex SNR. The same data are presented in figure 2

in the form of the log-magnitude noise standard deviation, which is plotted alongside

the log-magnitude mean for direct comparison. Note that although the log-magnitude

noise distribution has a non-zero mean, the mean is very small relative to the standard
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Figure 2. Mean and standard deviation of log-magnitude noise vs. complex SNR.

Although log-magnitude noise has a non-zero mean, the mean is very small compared

to the standard deviation.

deviation. As a result, it is reasonable to treat this distribution as having zero mean

and there is little benefit to bias-compensation.

2.2.2. Phase Noise Distribution The probability distribution function of the phase

noise, p� (θ), can be found by integrating (19) over 0 ≤ r < ∞, yielding the following

result:

p� (θ) =

∫ ∞

0

pSm (r, θ) dr

=
1

2π
exp

(−Q2
) (

1 +Q cos (θ)
√
π exp

(
Q2 cos2 (θ)

)
(1 + erf (Q cos (θ)))

)
, (28)

where

erf (x) =
2√
π

∫ x

0

exp
(−t2

)
dt. (29)

Similar to the case for the log-magnitude noise distribution, the phase noise

distribution is a function of the complex SNR. Unlike the log-magnitude noise

distribution, however, the phase noise distribution is zero mean. Figure 1 shows the

phase-noise variance as a function of complex SNR. Note that as complex SNR increases,

the phase and log-magnitude noise variances converge.

2.2.3. Noise Variance Approximation A linear approximation of the phase and log-

magnitude noise variances as a function of complex SNR can be obtained by considering

the case of a high SNR signal. Let NR and NI be the orthogonal components of

the circularly symmetric complex noise variable, N , in the directions of the real and

imaginary axes, respectively. As mentioned earlier, NR and NI each have zero mean and

variance σ2
R = σ2

I =
σ2
N

2
. For a high SNR signal, the real and imaginary components of
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the circularly symmetric noise effectively impact only magnitude and phase, respectively.

As such, the phase noise variance is approximately:

σ2
� ≈ E

[
arctan2

(
NI

|S|
)]

≈ 1

2Q2
, (30)

since NI/ |S| << 1 and the small angle approximation allows the arctan function to be

approximated by its argument.

To obtain the log-magnitude approximation, note that log-magnitude noise is

related to the magnitude noise in (25). As a result, the log-magnitude noise variance is

effectively:

σ2
ln|·| ≈ E

[
ln2

(
1 +

NR

|S|
)]

. (31)

For this high-SNR case, the logarithmic relationship can be simplified using the Taylor

series expansion of a natural logarithm:

ln

(
1 +

NR

|S|
)

=
NR

|S| −
1

2

(
NR

|S|
)2

+
1

3

(
NR

|S|
)3

− · · ·

≈ NR

|S| , (32)

since NR << |S|. Therefore, the log-magnitude noise variance can be approximated as

σ2
ln|·| ≈ 1

2Q2 . This result is identical to the approximation for phase noise.

The phase and log-magnitude noise variance approximation is shown in figure 1 as

a thick line for comparison with the analytic solutions. The analytic solutions clearly

converge with the simple approximation and thus the approximation derived here can

be considered valid for complex SNRs as low as 10 dB.

2.2.4. Noise Model The above analysis provides a mechanism to model the system

noise in the logarithmic domain. Let the measurements contained in the measurement

matrix, Sm, be modeled as a matrix of true values, S, plus a matrix of additive noise,

N, similar to (17):

Sm = S+N. (33)

The frequency-domain noise for each received signal is assumed to be circularly-

symmetric i.i.d. Gaussian noise with variance σ2
N. Therefore, each column of N is

independent of the other columns and has the structure:

�Ni =
[

�NT
Ri

�NT
Ii

�NT
Ii

]T
, (34)

where �Ni is the ith column of N, and the �NRi and �NIi vectors correspond to the noise

present in the ith column of SR and SI, respectively. Note that while the �NRi and
�NIi vectors are independent of one another, the two �NIi vectors in the above equation,

although not exactly the same as written, are nearly identical since the third set of linear

equations corresponds to SIPΔ, which effectively subtracts the row mean from each row

and has a negligible impact on the noise. Since the phase noise and log-magnitude noise
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can be treated as zero mean, the distribution for every element of N is assumed to have

zero mean, E [N] = 0. Further, by using the approximation from the previous section,

σ2
ln|·| ≈ σ2

� ≈ 1
2Q2 , the noise variance for each column can be approximated as:

σ2
i = E

[
�NT
i
�Ni

]
= E

[
�NT
Ri

�NRi

]
+ 2E

[
�NT
Ii
�NIi

]
=

3

2

∑
j

1

Q2
ij

, (35)

where Qij is the complex SNR for the ith column (FFT frequency bin) and jth received

signal.

2.3. Distance Vector Estimation

To completely define A in (13a), the distance vector �d must be known. Although

it is possible to measure the propagation distances, these measurements are subject

to measurement errors and may change slightly with variations in the propagation

environment. As such, the measured distance vector, �dm, is constrained to fit the data.

To begin, the s-dimensional vector space that �d resides in can be divided into two

mutually exclusive subspaces based on the MTR matrix, M �

TR and M �

TR. Note that

when the projection matrix, P �

TR, is multiplied with the SIPΔ product described in

(11), the distance vector term can be isolated:

P �

TRSIPΔ = −P �

TR
�d �k T

Δ . (36)

Inspection of the right-hand-side of (36) reveals that every column of P �

TRSIPΔ is a

scaled version of P �

TR
�d. Since �k T

Δ is unknown, �d cannot be obtained directly. It is

possible however, to use (36) to determine the direction of P �

TR
�d. Let �v �

TR be the unit-

norm vector corresponding to the direction of P �

TR
�d. Then �v �

TR must satisfy:

�v �

TR = argmax
�v

�vTVVT�v, (37)

where V is defined as

V = P �

TRSIPΔ. (38)

Note that �v �

TR is, by definition, the eigenvector that corresponds to the largest eigenvalue

of VVT. Also, although not performed for the examples presented in this paper, more

accurate estimates of �v �

TR may be possible by normalizing or weighting the columns of

V prior to performing the eigendecomposition.

The distance vector, �d, can now be defined in terms of �v �

TR, which is the unit-norm

projection of �d onto M �

TR, and some linear combination of the columns of M �

TR:

�d = d��v
�

TR +M �

TR
�d�, (39)
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where the d� and �d� variables are scaling coefficients. The scaling coefficients d� and �d�
are obtained by projecting the a priori measured distances, �dm, onto �v �

TR and M �

TR:[
d�
�d�

]
=
[
�v �

TR M �

TR

]T
�dm. (40)

For completeness, it should be noted that a similar derivation can be performed

to find an equivalent �v �

TR for the logarithm of the scaled distance vector, �d�. The

exclusive use of phase-response data over log-magnitude data was chosen for convenience.

Alternatively, both the magnitude and phase information could be used to make a

combined estimate. However, the �d and �d� vectors are related by a logarithmic function,

so combining �v �

TR estimates requires a nonlinear search. Since satisfactory results

are obtained with only phase information, the additional complexity associated with

combining distance vector estimates from both magnitude and phase information is

omitted in the interest of simplicity.

2.4. Linear Solution and Model Null-Space

The general solution to (12) can be obtained by applying the Moore-Penrose

pseudoinverse [18], denoted by “†”, and accounting for the null-space of the A matrix:

X = A†Sm +A �=C �=
A, (41)

where A† =
(
ATA

)−1
AT, the columns of A �= form a basis for the null space of A and

C �=
A is a matrix of unknown coefficients. In section 2.2 it was shown that the phase

noise has zero mean and the log-magnitude noise can be safely treated as zero mean. As

such, the pseudoinverse operation used in (41) provides the least-squares approximation

to the values in X. Note that obtaining the first term of (41) is not computationally

demanding since the A† matrix is not frequency-dependent and need only be calculated

once.

For the problem formulation considered here, the null space of A can be

characterized by inspection of (13a). To begin, decompose the M�=
TR matrix into two

sub-matrices:

M�=
TR =

[
M�=

(T)R

M�=
T(R)

]
, (42)

where M�=
(T)R is a [t×m�=

TR] sub-matrix and M�=
T(R) is a [r×m�=

TR] sub-matrix. Assuming

that �d and �d� are linearly independent of MT and MR, then the null space of A is
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spanned by five sets of vectors, namely:

A �= =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A �=
R A �=

I A �=
τ A �=

ρ �a �=
κ

(1) M�=
(T)R 0 0 0 �0t

(2) 0 M�=
(T)R 0 0 �0t

(3) 0 0 It 0 �0t
(4) M�=

T(R) 0 0 0 �0r

(5) 0 M�=
T(R) 0 0 �0r

(6) 0 0 0 Ir �0r
(7) 0 0 0 0 0

(8) 0 0 0 0 0

(9) 0 0 0 0 1

(10) 0 0 − 1
2π
Mτ − 1

2π
Mρ

1
2π
�d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

The fact that the columns of A �= reside in the null space of A can be verified by

inspection of (13a) and (43). To verify that the entire null space of A is spanned by the

columns of A �=, first note that each column of A �= is independent of all other columns,

and then consider that there are 2m�=
TR + t+ r + 1 columns. Since the dimensions of A

are [3s× (3(t+ r + 1) + s)], the rank-nullity theorem states that:

rank (A) + nullity (A) = 3(t + r + 1) + s, (44)

Substituting (16) and (15) into the above equation and solving for nullity (A) yields:

nullity (A) = 2m�=
TR + t+ r + 1. (45)

Since there are 2m�=
TR+ t+r+1 columns in A �= that are linearly independent and reside

in the null space of A, these columns span the null space of A.

The first two sets of vectors, A �=
R and A �=

I , account for potential ambiguities in

the magnitude and phase relationship between the transmitter and receiver transfer

functions. Consider a simple example: regardless of the actual phase estimates of the

transmitter and receiver transfer functions, no net change would result in the phase

estimate of model-generated signals if all of the transmitter phase estimates are shifted

by some angular offset, θ, and all of the receiver phase estimates are shifted by a

corresponding negative phase offset, −θ. This type of ambiguity, and the analogous

scenario with log-magnitude scaling, is captured by the A �=
R and A �=

I null-spaces. Unless

additional constraints are available for TI or RI, the sub-space defined by A �=
R and A �=

I

can be ignored from an estimation standpoint since the ambiguity cannot be resolved.

The third and fourth sets of vectors, A �=
τ and A �=

ρ , relate additional phase offsets in

the transmitter and receiver phase estimates with corresponding shifts in the �b vector

estimate. Notice that as the A �=
τ and A �=

ρ columns are scaled by integer multiples of

2π, the resulting phase offsets for the transmitter and receiver transfer functions are

changed by integer multiples of 2π, which results in effectively unchanged transmitter

and receiver phase responses. Additionally, if the elements of Mτ and Mρ are integer

values, then 2π integer multiples of A �=
τ and A �=

ρ result in integer shifts in the �b vector
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estimate. This repetitive behavior indicates that the �T (ω), �R (ω), and �b estimates

are not unique. This conclusion is somewhat intuitive since any 2π offset in �T (ω) or

�R (ω) results in an identical set of signals. Unlike the first two sets of vectors, A �=
τ and

A �=
ρ cannot be ignored, since they influence the �b vector estimate.

Finally, the fifth null-space vector set, �a �=
κ , is a single vector. If, like the Mτ and

Mρ matrices that are assumed to have only “1” and “0” elements, the �d vector can

be multiplied by some value to produce an all-integer vector, then the κ estimate is

not unique. As a result, a unique κ solution is only mathematically possible if the �d

vector contains at least one irrational element. Although a requirement for an irrational

distance is impractical, it is relatively easy to select a set of distances such that only

one solution can be accepted as a realistic parameter value. A lower bound for the

proximity of potential solutions was derived by Hall and Michaels [10]. Like the A �=
τ and

A �=
ρ vector sets, the �a �=

κ vector also affects the �b vector estimate and cannot be ignored.

The A �=
τ , A

�=
ρ , and �a �=

κ vector sets all have an impact on the �b vector estimate. Two

additional model constraints can be applied to assist in the �b vector estimate. First, the

assumed model dictates that κ, �τ , �ρ, and �b are all frequency-independent. Therefore,

the coefficients in C �=
A of (41) that impact the κ, �τ , �ρ, and �b estimates must also be

frequency-independent. Additionally, the �b vector is constrained to be an all-integer

vector. To enforce these final constraints in the model parameter estimates, a nonlinear

search is required.

2.5. Nonlinear Search

In Section 2.4, the linear least-squares estimate of X in (41) was shown to include some

linear combination of the column vectors described in (43). Of these five sets of vectors,

three sets of vectors (A �=
τ , A

�=
ρ , and �a �=

κ ) are associated with the �b estimate, which must

be an all-integer vector for the estimated model parameters to agree with the data.

A nonlinear search is described here to identify a solution that satisfies the all-integer

constraint.

The use of an unwrapped phase response ensures that the all-integer �b vector

is frequency-independent. Therefore, a �b estimate can be described as a function of

frequency-independent null-space coefficients, �c :

�b (�c ) = BX (�c ) �Σ

= B
(
A†Sm +

[
A �=

τ A �=
ρ �a �=

κ

]
�c �1T

w

)
�Σ, (46)

where B =
[
0 Is

]
is a [s × 3(t + r + 1) + s] matrix that isolates the elements of X

corresponding to the�b values, �c �1T
w corresponds to the frequency-independent coefficients

in C �=
A, and

�Σ is a [w × 1] vector that performs a weighted average over frequency.

2.5.1. Optimal Weights In this section, the optimal weights, �Σ•, for combining the

frequency-dependent estimates of �b are derived.
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Let b̂=A be the collection of w separate estimates of �b obtained by applying the

pseudo-inverse of A to the measurement matrix Sm. Since�b is independent of frequency,

each of these estimates corresponds to a single, underlying vector,�b=A, plus additive noise:

b̂=A = BA†Sm

= BA†S+BA†N

= �b=A�1
T
w +Nb. (47)

where Sm is defined in (33) andNb is another [s×w] matrix of additive noise constructed

as BA†N. Since each element of Nb is constructed from a linear combination of the

elements of N, the noise present in each element of Nb has effectively zero mean. In

addition, since each column of N is independent of the others, each column of Nb is

also independent of the other columns in Nb.

The optimal weights, �Σ•, are selected to satisfy:

�Σ• = argmin
�Σ

E

[∥∥∥b̂=A�Σ−�b=A

∥∥∥2] , such that �1T
w
�Σ = 1, (48)

where E [·] is the expected value operator and the �1T
w
�Σ = 1 constraint ensures that the

weights sum to 1. The solution to (48) can be found using a Lagrange multiplier, λ, to

satisfy the summation constraint,

L = E

[(
b̂=A

�Σ−�b=A

)T (
b̂=A

�Σ−�b=A

)]
+ λ

(
�ΣT�1w − 1

)
. (49)

The Lagrangian, L, is minimized by taking the derivative of (49) with respect to �Σ,

setting it equal to zero, and solving for �Σ:

�Σ• = Z−1�1w

(∥∥∥�b=A∥∥∥2 − λ

2

)
, (50)

where

Z−1 =

(∥∥∥�b=A∥∥∥2�1w�1T
w +ΛN

)−1

(51)

and

ΛN = E
[
NT

bNb

]

=

⎡
⎢⎣

σ2
b1 0 · · ·
0 σ2

b2
...

. . .

⎤
⎥⎦ . (52)

Note that a large reduction in terms during the Lagrangian minimization is possible

because E [Nb] = 0. Each σ2
bi element corresponds to E

[
�NT
bi

�Nbi

]
, where �Nbi is

the ith column vector of Nb. Substituting (50) into the �1T
w
�Σ = 1 constraint of (48),∥∥∥�b=A∥∥∥2 − λ

2
can be found:(∥∥∥�b=A∥∥∥2 − λ

2

)
=

1

�1T
wZ

−1�1w
. (53)
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Finally, a closed-form solution to (48) is obtained by substituting (53) into (50):

�Σ• =
Z−1�1w

�1T
wZ

−1�1w
∝
[

1
σ2
b1

1
σ2
b2

· · ·
]T

. (54)

The proportionality with the inverse noise variance can be seen by noting that the

structure of Z−1 naturally lends itself to the Woodbury Matrix Identity [19], also known

as the matrix inversion lemma. According to this identity formula, Z−1 can be calculated

as:

Z−1 = Λ−1
N − Λ−1

N
�1w�1

T
wΛ

−1
N

1

‖�b=A‖2 +�1T
wΛ

−1
N
�1w

(55)

where

Λ−1
N =

⎡
⎢⎢⎣

1
σ2
b1

0 · · ·
0 1

σ2
b2

...
. . .

⎤
⎥⎥⎦ . (56)

The relationship expressed in (54) indicates that the optimal weights are

proportional to the inverse of the frequency-dependent noise variance. Since Nb =

BA†N, the frequency-dependent noise variance can be derived, similar to (35):

σ2
bi = E

[
�NT
bi
�Nbi

]
= E

[
�NT
i Y

�Ni

]
=

1

2
�yT
(

1

�Qi

)
, (57)

where Y = (A†)TBTBA†, �y is a [3s× 1] vector containing the diagonal elements of Y,
�Qi is a [3s×1] vector of squared complex SNR values for the ith column of Sm, and the

rightmost division operation is an element-wise inversion. The column-specific, squared

complex SNR values, �Qi, can be approximated in a single matrix, Q:

Q ≈

⎡
⎢⎣ Is

Is
Is

⎤
⎥⎦ exp (2SR)− �σ2

m
�1T
w

�σ2
m
�1T
w

, (58)

where exp (2SR) is an element-wise exponential operation that produces a [s × w]

matrix of squared magnitude values, �σ2
m is a [s × 1] vector of complex noise variance

measurements corresponding to each received signal, and the division operation is again

performed element-wise. The set of three identity matrices accounts for the structure

of �Ni discussed in (34). With Q obtained as in (58), the optimal weights can be

approximated as:

�Σ• ∝
[

1
σ2
b1

1
σ2
b2

· · ·
]T

∝ 1

�yT(1/Q)
, (59)

with the division operations again performed element-wise. Note that even though each
�b element is specific to one of the received signals, a single, composite �Σ• is used here

since data from multiple signals contribute to the b̂=A estimates of (47).
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2.5.2. Multidimensional Search The definition of �b as a function of �c in (46) can be

used to search for a value of �c that produces an all-integer estimate. The search is

performed by finding �c b such that:

�c b = argmin
�c

‖�ε (�c )‖2 , (60)

where the error function �ε (�c) is defined as

�ε (�c ) = �b (�c )− [[�b (�c )]]. (61)

Here �b(�c ) is defined as in (46) and [[·]] is the round function, which rounds each element

towards the nearest integer.

Although the nonlinear search can be performed as written, the error surface

associated with (61) is multi-dimensional, discontinuous, and has an infinite number of

local minima. As such, the entire search space of possible �c values must be evaluated.

Such an exhaustive search is computationally demanding and time intensive.

2.5.3. Modified Search A modification to the approach described in (60) and (61)

was developed to avoid an exhaustive multidimensional search by taking advantage of

the null-space structure. Let �c b be defined as the true null-space coefficients with the

following sub-components corresponding to the A �=
τ , A

�=
ρ , and �a �=

κ matrices from (43):

�c b =
[
�c T
τ �c T

ρ cκ

]T
=
[
�c T
τρ cκ

]T
, (62)

where �c T
τρ =

[
�c T
τ �c T

ρ

]T
. Then �b(�c b) from (46) can be decomposed as:

�b (�c b) = BA†Sm
�Σ+B

[
A �=

τ A �=
ρ �a �=

κ

]
�c b

= �bκ (cκ) +�bτρ (�c τρ) , (63)

with the �bκ (cκ) and �bτρ (�c τρ) vectors defined as

�bκ (cκ) = BA†Sm
�Σ+

cκ
2π

�d, (64a)

�bτρ (�c τρ) = − 1

2π
Mτρ�c τρ. (64b)

The above equations can be obtained from (63) through the definitions of A �=
τ , A

�=
ρ , and

�a �=
κ in (43) and Mτρ from (14b). The �c τ and �c ρ vectors that make up �c τρ are associated

with the A �=
τ and A �=

ρ vector sets, which were shown in Section 2.4 to relate additional

phase offsets of the transmitter and receiver transfer functions to corresponding changes

in the �b estimate. Since these phase offsets result in identical solutions as each �c τ and

�c ρ coefficient is increased by an integer multiple of 2π, a bound can be established

on each element of the �bτρ (�c τρ) vector for certain structures of Mτρ. For example, if

Mτρ = MTR, then the Mτρ matrix will have no more than two “1” values per row.

Therefore, each element of the �bτρ (�c τρ) vector can be constrained to lie between ±1.

These boundaries for �bτρ (�c τρ), combined with (63), provide a bound for each individual

element of �b (�c b):

		�bκ (cκ)

 ≤ �b (�c b) ≤ ���bκ (cκ)��, (65)
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where �c b and cκ are defined as in (62) and the ��·�� and 		·

 operations denote element-

wise ceiling and floor operations, respectively. Equation (65) implies that given a scalar

value cκ, each integer element of�b (�c b) must be one of two integer values, either 		�bκ (cκ)


or ���bκ (cκ)��, resulting in 2s possible vectors. To determine the appropriate combination

of s integer operations, note that (64b) requires �bτρ (�c τρ) to lie in the column space of

Mτρ.

Let c represent a potential value of cκ. The best combination of integer operations,

ĥ, for a given c is chosen to satisfy:

ĥ (c) = argmin
�h∈H

∥∥∥P�

τρ

(
f
(
�bκ (c) ,�h

)
−�bκ (c)

)∥∥∥ , (66)

where �h is a binary vector contained in H, the set of all vectors containing only “1” and

“0” elements, and the function f
(
�b,�h
)
is performed element-wise:

f (bi, hi) =

{
		bi

 if hi = 0,

��bi�� if hi = 1.
(67)

In (66), the f
(
�bκ (c) ,�h

)
term is an estimate of the all-integer �b (�c b) vector, given a

cκ estimate, c, and an �h vector defining the combination of integer operations. The

difference operation, f
(
�bκ (c) ,�h

)
−�bκ (c), corresponds to the resulting�bτρ (�c τρ) estimate

from this combination of c and �h. Finally, the projection operation and norm provide a

measure of the portion of the �bτρ (�c τρ) estimate that cannot be accommodated by the

model since �bτρ (�c τρ) must reside in the column space of Mτρ.

The structure of (66) can be adapted to find the most appropriate cκvalue:

cκ = argmin
c

∥∥∥P�

τρ

(
f
(
�bκ (c) , ĥ (c)

)
−�bκ (c)

)∥∥∥ , (68)

where ĥ (c) and f
(
�b,�h
)
are defined as in (66) and (67), respectively.

Rearranging (63) and (64b), �c τρ is obtained from an estimate of cκ:

�c τρ = −2πM†
τρ

(
f
(
�bκ (cκ) , ĥ (cκ)

)
−�bκ (cκ)

)
+M�=

τρ�c τρ. (69)

Similar to the case for A �=
R and A �=

I discussed in Section 2.4, the M�=
τρ in the above

equation represents a null space that describes the phase offset ambiguity between the

transmitter and receiver transfer functions. Without any further model constraints, this

null space, like the A �=
R and A �=

I subspaces, can be ignored.

Equation (68) indicates that for every c value considered in the search for cκ, an

independent ĥ (�c ) must first be found, which requires the comparison of 2s potential �h

vectors. While this one-dimensional search is an improvement over the multidimensional

search described in section 2.5.2, it is computationally intensive, particularly since s

grows exponentially with the number of transducers.

One method to further streamline the nonlinear search is to introduce additional

a priori information about the anticipated values of κ. For example, nominal values

for κ can be calculated based on the propagating environment (material, thickness,
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propagation mode). Based on these nominal values, the search space for (68) can be

limited to values that result in dispersion estimates that are in the vicinity of the nominal

values. Note that although a priori information is used at this point, it is not being

used to estimate parameters, rather the nominal information selects between parameters

that satisfy both the measured data and model constraints.

2.6. Model-Based Parameter Estimation Summary and Discussion

The model-based parameter estimation algorithm is summarized in table 2. This table

illustrates that although the derivation is somewhat complicated, the implementation

is straightforward and tractable. The algorithm is built upon the assumption that the

system of linear equations in (12) accurately reflects the behavior of the recorded signals

in Sm. The algorithm also assumes that sufficient samples are used to ensure that the

phase response can be accurately unwrapped. Note that for the phase response to

be accurately unwrapped, the frequencies of interest must span a continuous band of

spectral content with positive SNR at each discrete frequency.

In addition to the above assumptions, it may be possible to incorporate additional

constraints into the model to further constrain the resulting estimates. For example,

realistic dispersion relations for the frequencies of interest may be monotonic and bounds

may be available for the first or second derivatives of the transmitter and receiver

transfer functions. For the purposes of this paper, however, all parameters are able to

be approximated to a satisfactory degree with the imposed constraints and additional

constraints are unnecessary complications.

3. Experimental Validation

The model-based parameter estimation technique for wave propagation in a

homogeneous medium has been applied to two separate experimental data sets: (1)

guided waves excited by a single transmitter and recorded by multiple identical

receivers at various distances from the transmitter, and (2) guided waves propagating

between sensor pairs of a distributed array composed of six PZT transducers, each

with independent transmit and receive transfer functions. This section describes the

experimental setup, model assumptions, and assumption-specific algorithmic details,

and then presents parameter estimation results.

Although the two examples presented here are based on the S0 and A0 guided

wave modes, the algorithm is applicable to any wave-based application for which

the analyzed signals behave according to the assumed propagation model. From a

guided wave perspective, this means that the algorithm is applicable to any frequency-

plate thickness product (including Rayleigh or Stonely waves) with higher frequency

ranges, wider bandwidths, and higher order modes than presented here provided that

the model assumptions are valid, which implies that multiple, mode-pure direct arrivals

are available that are free of any reflections or extraneous signals.
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Table 2. Summary of model-based parameter estimation algorithm for characterizing

wave propagation in a homogeneous medium.

Problem Setup: The application-specific propagation model is

determined and all measurements are described in terms of the model

parameters.

• Define MT, MR, Mτ , and Mρ based on model assumptions.

• Define Sm, �σ
2
m and �dm with measured data.

– Limit frequencies of interest to a continuous spectrum.

– Positive SNR in each FFT bin.

– Unwrap phase responses in SI.

Distance Vector Estimation: A priori distance measurements

are projected onto data- and model-driven unit-vectors to obtain an

estimate of the actual distance vector.

• Compute �v �

TR as the eigenvector corresponding to the largest

eigenvalue of P �

TRSIPΔS
T
IP

�

TR as discussed in (37).

• Use (40) to compute coefficients:

[
d�
�d�

]
=
[
�v �

TR M �

TR

]T
�dm.

• Estimate distance vector �d = d��v
�

TR +M �

TR
�d� as in (39).

• Define A with �d estimate as shown in (13a).

Nonlinear Search: The null-space coefficients �c τ , �c ρ, and cκ are found

to augment the linear solution.

• Estimate optimal weighting coefficient �Σ• as in (59).

• Search for cκ = argmin
c

∥∥∥P�

τρ

(
f
(
�bκ (c) , ĥ (c)

)
−�bκ (c)

)∥∥∥ as in

(68), where ĥ (c) and f (·) are defined in (66) and (67).

• Compute �c τρ = −2πM†
τρ

(
f
(
�bκ (cκ) , ĥ (cκ)

)
−�bκ (cκ)

)
from (69).

Final Solution: Combine nonlinear search results with least-squares

solution to obtain final estimate of X.

• Calculate X = A†Sm +
[
A �=

τ A �=
ρ �a �=

κ

]⎡⎢⎣ �c τ

�c ρ

cκ

⎤
⎥⎦�1T

w as in (41).
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Figure 3. Experimental setup for each data set. (a) Guided waves are excited by a

single transmitter and recorded at multiple distances with a scanning laser vibrometer.

(b) Guided waves are generated with 15 unique transmitter-receiver pairs from a sparse

array of six permanently attached transducers.

Algorithmic performance is a challenging concept when working with experimental

data since the estimated parameters cannot be compared to “true” parameter values.

In previous work [10], the concept of “model fit” was employed, in which the estimated

parameters are substituted into the assumed model and the resulting signals are

compared with measured data. This technique provides a mechanism to gauge how

well the assumed model and estimated parameters are able to describe the measured

data. Presumably, if the algorithm is able to accurately describe the measured signals,

then the parameters are likely to be accurately estimated. This assumption has been

found to be true to a large degree with one exception – in many cases multiple dispersion

curve offsets, κ, can be used to describe the data equally well.

3.1. Experimental Setup

Figure 3 illustrates the experimental setup for the two multi-signal scenarios considered

in this paper. For the first set of experimental data, a single PZT transducer excites

the two fundamental symmetric, S0, and antisymmetric, A0, modes of a 1524 × 2438 ×
3.18 mm plate of 6061 aluminum, which is assumed to be isotropic and homogeneous.

Only two modes are excited because the frequency range of the excitation signal is

below the cutoff frequency of higher-order modes [20]. The signals are recorded by a

scanning laser vibrometer at distances of 545 mm, 606 mm, 626 mm, and 687 mm from

the transmitter along a single radial line; therefore �dm = [ 545 606 626 687 ]T. The

measurement distances and plate size were specifically chosen to allow the direct arrival

of each mode to be isolated in the time domain without overlap with the other mode

or reflections from either mode, which allows each mode to be handled independently

by the approach proposed here. Since 200 waveforms were averaged to produce each
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measurement, the noise-floor for each laser vibrometer recording was more than 60 dB

below the power of the largest frequency component. As such, the �σ2
m vector elements,

for both modes, were set to 0.001 times the power of the largest frequency component

in each respective signal.

The second set of experimental data was originally obtained to illustrate sparse

array imaging for structural health monitoring by Michaels [21]. A 610 × 610 ×
4.76 mm plate of 6061 aluminum, again assumed to be both isotropic and homogeneous,

was interrogated with six permanently attached PZT transducers distributed over the

surface of the plate, as shown in figure 3(b). If the six transducers are numbered 1-6, then

the data collection was performed in the following round-robin fashion: 1 → 2, 1 → 3,

· · ·, 5 → 6, where 1 → 2 indicates Transducer 1 was used to transmit and Transducer

2 to record the signal, resulting in 15 unique recorded signals. The measured distance

vector for the second experimental data set, sorted for readability and expressed in mm,

was obtained by measuring the physical distance from transducer to transducer for each

transmitter-receiver pair:

�dm = [156 170 183 197 229 305 325 . . .

337 344 352 370 382 398 419 433]T.
(70)

For this second data set, the signals were oversampled and thus occupy a very narrow

range in the frequency domain. Therefore, the electronic noise levels, �σ2
m, were estimated

by computing the power spectrum of each signal and then selecting the median value.

The resulting �σ2
m vector is:

�σ2
m = [0.047 0.040 0.037 0.060 0.052 0.073 0.038 . . .

0.040 0.098 0.088 0.046 0.034 0.068 0.031 0.098]T,
(71)

where each element of �σ2
m above corresponds to the propagation distance in (70). Note

that the noise floor varies slightly between transducer pairs and is not dependent on

propagation distance. Although the transducers do excite both S0 and A0 modes, the S0

mode is sufficiently dominant to treat the recorded signals as single-mode. All boundary

reflections were removed from the recorded waveforms by windowing the direct arrivals.

Signal processing was performed with MATLAB (The Mathworks, Natick, MA)

running on a Hewlett-Packard laptop (Hewlett-Packard Co., Palo Alto, CA) with an

Intel Core2 Duo CPU (Intel Corp., Santa Clara, CA) operating at 2.26 GHz with 4

GB of RAM and running Windows Vista Home Premium (Microsoft Corp., Redmond,

WA). The model-based parameter estimation algorithm was configured to evaluate 1000

potential cκ values for each algorithm execution, which required less than 1 second to

complete for the first data set (four received signals). In contrast, the second data set

(15 received signals) required approximately 80 seconds to complete. For both cases,

the modified non-linear search described in Section 2.5.3 consumed over 90% of the

computation time.
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3.2. Common Transfer Functions

The first set of model assumptions to be discussed corresponds to the case where the

transmit and receive transfer functions are assumed to be identical for all recorded

signals, i.e., all signals share a common transmitter and receiver transfer function. Note

that because all transmitter and receiver transfer functions are identical, the transmitter

and receiver transfer functions cannot be distinguished from one another. As such, the

MR and Mρ matrices are null and MT = Mτ = MTR = Mτρ = �1s. Under these

assumptions, the structures for A and X are:

A =

⎡
⎢⎣

�1s �0s �0s −�d� �0s �0s 0
�0s �1s �1s �0s −�d −�d 2πIs
�0s �1s �0s �0s −�d �0s 0

⎤
⎥⎦ , X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TR +RR

TΔ +RΔ

(�τ + �ρ)�1T
w

�p T

�k T

κ�1T
w

�b�1T
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (72)

Since the M �

TR matrix is a single vector with identical-valued elements, the final

estimate of �d is obtained by projecting �dm onto two unit vectors, �v �

TR and M �

TR. Note

that for the first set of experimental data, two modes are present. Since the propagation

distances are identical for both modes, the SI matrix used in (38) is composed of an

SNR-weighted sum of the SI for each mode, which ensures that all available data are

used to estimate �d.

Analysis of A �= reveals that the entire null space of A is spanned by two vectors,

A �=
τ and �a �=

κ . Since MTR = �1s, the M�=
TR, A

�=
R and A �=

I matrices are null. Similarly, since

Mτ = �1s and Mρ is null, A �=
τ is a single vector and A �=

ρ is null.

Figure 4 reflects the ability of this model to fit the first set of experimental data.

The x -axis of the waterfall plot corresponds to time, while the y-axis reflects propagation

distance. Each of the four measured time-domain signals are independently scaled for

presentation purposes and are displayed in figure 4 with a vertical offset equal to the

measured propagation distance. The estimated signals are generated by substituting the

estimated parameters into the propagation model and are presented in a similar fashion,

with signal scaling identical to the scaling used for the corresponding measured signals

and vertical offset equal to the estimated distances. Errors in distance estimates are

manifested as vertical separations between the measured and estimated signals, errors in

propagation loss estimates result in amplitude discrepancies, and errors in dispersion or

transfer function estimates impact the signal shapes. Figure 4 indicates excellent “model

fit” between the estimated model parameters and measured data. Since the same PZT

transducer and laser vibrometer were used for all recorded signals, the assumption about

identical transmitter and receiver transfer functions is valid. Even if the PZT transducer

is not isotropic, the fact that the signals were recorded along a single radial line from

the transmitter ensures that the transmitter transfer function is identical for all of the

signals.
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Figure 4. Model fit results for experimental data under assumptions that all

transmitter and receiver transfer functions are identical. Guided waves are excited by a

single transmitter and recorded at multiple distances with a scanning laser vibrometer.

Figure 5 compares the estimated dispersion curves for each mode to nominal

dispersion curves for a 3 mm thick aluminum plate. Although a perfect match is not

expected because of temperature, pressure, and thickness discrepancies, the estimates

closely match the nominal values. Note that with only four received signals, the

error surface associated with (68) has an infinite number of periodic local minima.

The appropriate cκ was selected by bounding the nonlinear searches to produce a S0

wavenumber between 0 and 0.064 mm−1 and an A0 wavenumber between 0.06 and

0.13 mm−1 for the lowest frequency considered (156 kHz).

In contrast, figure 6 represents the “model fit” for a model that assumes common

transfer functions in each recorded signal when applied to the second set of experimental

data, which uses 15 different pairs of six separate transducers. Note that since

the number of recorded signals is different for the two data sets, (72) was updated

accordingly, which is the only change between the handling of the two data sets.

Although all of the transducers are of the same size and shape and similarly bonded

to the plate, algorithmic performance is clearly degraded in comparison to figure 4.

Significant discrepancies in distance estimates can be seen at the bottom of the figure
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Figure 5. Comparison of wavenumber vs. frequency dispersion estimates for

experimental data under assumptions that all transmitter and receiver transfer

functions are identical. Guided waves are excited by a single transmitter and recorded

at multiple distances with a scanning laser vibrometer.

and at roughly 350 mm, where the estimated signals appear offset from the measured

signals. Additionally, the signal estimates located at distances less than 200 mm exhibit

noticable phase offsets from the measured signals.

3.3. Independent Transfer Functions

In contrast to Section 3.2, the assumed propagation model is expanded to accommodate

transducer-specific transmit and receive transfer functions. For the second data set,

Transducer 1 is never used to record and Transducer 6 is never used to transmit.

Therefore, matrices are defined so that the algorithm estimates five transmitter transfer

functions (1-5) and five receiver transfer functions, (2-6), and their respective phase

offsets. The MT, MR, Mτ , and Mρ matrices are defined as follows:

MT = Mτ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

T

(73a)

MR = Mρ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

T

. (73b)
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Figure 6. Model fit results for experimental data under assumptions that all

transmitter and receiver transfer functions are identical. Guided waves were generated

with 15 unique transmitter-receiver pairs from a sparse array of six permanently

attached transducers.

Unlike the prior case, the MT and MR matrices defined above have a column-space

spanning nine dimensions (m�

TR = 9), which means that the projection matrix P �

TR

projects onto a six-dimensional space (m�

TR = 15 − m�

TR = 6) and the M �

TR matrix is

composed of nine orthonormal vectors. Therefore, the final estimate of �d is obtained by

projecting �dm onto a ten-dimensional space (one dimension for �v �

TR and nine dimensions

for M �

TR).

Figure 7 depicts the
∥∥∥P�

τρ

(
f
(
�bκ (c) , ĥ (c)

)
−�bκ (c)

)∥∥∥ values from (68) for both

sets of model assumptions. Notice that the more accurate model results in lower error

values in general and a stronger indication of the appropriate cκ.

Figure 8 is analogous to figure 6 for the previous set of model assumptions. However,

figure 8 reflects a significantly improved model fit. The additional degrees of freedom in

the �d estimate (ten degrees of freedom vs. two for the common transducer model) allow

a much better estimate of the propagation distances. All measured signals appear to

be well-approximated, both in shape and amplitude, which indicates accurate estimates

of both the independent transfer functions as well as the dispersion curve. The small
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Figure 7. Comparison of error metric values for the nonlinear search using

experimental data from a sparse array of six transducers. Note that the error is plotted

as a function of the k(ω) estimate for the lowest frequency at which k(ω) estimation

is performed (105 kHz). The overall error is lower and minima are more pronounced

for the case of transducer-specific transfer functions.

vertical offsets are attributed to inaccuracies in the distance measurements.

The composite transmitter-receiver transfer functions for each recorded waveform

are shown in figure 9. The thick line in the background corresponds to the single

estimate of the common transmitter-receiver transfer function from the previous section.

The 15 thin lines in the foreground correspond to the 15 independent transmitter-

receiver transfer function estimates (i.e. the inverse Fourier transforms of T1 (ω)R2 (ω),

T1 (ω)R3 (ω), · · ·, T5 (ω)R6 (ω)). This figure illustrates that the 15 transducer pairs are

best modeled by slightly different transfer functions, which cannot be accommodated

by the common transfer function model.

Finally, figure 10 depicts the estimated dispersion curves for the two sets of

assumptions. Note that when the model incorporates transducer-specific transfer

functions, the dispersion estimate is closer to the expected nominal values. This

improvement is not surprising since the model with independent transfer functions

represents the received signals more accurately.

4. Summary

This paper has presented a model-based approach that estimates wave propagation

parameters from a set of recorded signals. A general wave propagation model is

presented and a linear system of equations is constructed. Circularly-symmetric

complex noise is analyzed in the context of the associated phase and log-magnitude
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Figure 8. Model fit results for experimental data under assumptions that transmitter

and receiver transfer functions are transducer-specific. Guided waves were generated

with 15 unique transmitter-receiver pairs from a sparse array of six permanently

attached transducers.

noise distributions, which are both shown to have effectively zero mean and variances

proportional to the square of the complex SNR for SNR values greater than 10 dB. The

algorithm obtains a closed-form estimate of the propagation distances by projecting

a priori measured distances onto two or more orthonormal vectors based on the

propagation model and measured data. The remaining model parameters are obtained

by first solving a linear system of equations and then augmenting the linear solution with

a nonlinear search to incorporate integer-based model constraints. The nonlinear search

is performed with a streamlined single-dimensional search. Algorithmic performance is

demonstrated with two sets of experimental data using guided waves that correspond to

two different sets of model assumptions, demonstrating that the proposed generalized

framework can be readily adapted to meet individual application needs.

The primary contribution of this paper is a model-based algorithm for characterizing

wave propagation in a homogeneous medium with minimal a priori information. This

approach allows systems incorporating acoustic, electromagnetic, or elastic waves to

characterize dispersion curves, propagation loss, propagation distances, as well as
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Figure 9. Comparison of composite transmitter-receiver transfer functions estimated

using experimental data from a sparse array of six transducers. For the common

transfer function case, a single transmitted signal is assumed (thick line). When

independent transfer functions are modeled, each composite signal is associated with

a unique transmitter-receiver combination (thin lines).
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Figure 10. Comparison of wavenumber vs. frequency dispersion estimates for

experimental data from a sparse array of six transducers. When the model allows

for independent transfer functions, the dispersion estimate is closer to nominal values.

transmitter and receiver transfer functions in situ at the time of test, thereby avoiding

potentially erroneous a priori assumptions.
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